Abstract:
그라파이트 산화물 제조방법 및 이를 이용한 그래핀 나노시트 제조방법이 제공된다. 본 발명에 따르면 그라파이트 산화물을 합성함에 있어서 종래의 화학적 박리법 보다 고품질의 그라파이트 산화물을 얻어낼 수 있고, 이러한 고품질의 그라파이트 산화물을 이용하여 제조된 그래핀 나노시트는 주름이 펴지게 되고, 그래핀의 말단 부분은 탄소나노튜브 모양으로 형성되므로, 높은 전도성 특성을 갖게 된다.
Abstract:
본 발명은 이온의 이동성이 높아 리튬 전지의 음극재, 리튬공기전지 전극, 수퍼캐패시터 전극, 그리고 플루형 커패시터 전극으로 이용될 수 있는 카바이드 유도 탄소의 제조방법을 개시한다. 본 발명의 목적을 달성하기 위하여 카바이드 화합물을 진공 상태에서 열처리하여 진공 처리된 카바이드 화합물을 제조하는 단계, 상기 진공 처리된 카바이드 화합물을 할로겐족 원소 함유 기체와 열화학 반응시켜 상기 진공 처리된 카바이드 화합물 내의 탄소를 제외한 나머지 원소를 추출하는 단계를 포함하며, 상기 열화학 반응 후 어닐링 단계를 더 포함할 수 있다. 이에 의하여 할로겐족 원소 함유 기체와 열화학 반응만을 통해 제조된 카바이드 유도 탄소에 비해, 기공의 분포가 적으면서 조밀한 그라파이트 프린지 및 격자 간격이 넓은 구조를 가져 이온의 이동성이 증가되는 효과가 있다.
Abstract:
The present invention relates to a manifold having a leakage prevention unit for blocking the leakage of an electrolyte solution, an integrated complex electrode cell and a redox flow battery including the same. By having a first leakage prevention unit and a second leakage prevention unit, the electrolyte solution can be prevented from leaking through though-holes, or permeating into through-holes on the other side after infiltrating between gaskets. Thereby, the lifespan of the battery can be maintained and charge-discharge efficiency and energy efficiency can be prevented from decreasing by the increase in charging time or decrease in discharging time.
Abstract:
The present invention relates to an electrolyte solution for a redox flow battery including total organic active materials (total organic redox couples), and a redox flow battery using the same. The active materials used in the electrolyte solution for a redox flow battery according to the present invention uses the oxidation-reduction reaction of a nonmetallic organic compound instead of the oxidation-reduction reaction of metal ions, thereby achieving effects of enabling the battery to have high voltage and high capacity.
Abstract:
The present invention relates to a cathode catalyst for a lithium-air battery, a method for producing the same, and a lithium-air battery comprising the same. The method for producing a cathode catalyst for a lithium-air battery is characterized by comprising: a first step of mixing precursors of carbon nanofibers and precursors of metal oxides with a solvent to produce a solution of electrospinning; a second step of electrospinning the solution of electrospinning produced in the first step to form a metal oxide-carbon nanofiber complex; and a third step of treating the metal oxide-carbon nanofiber complex formed in the second step by heat. According to the cathode catalyst for a lithium-air battery produced by the method of the present invention, the oxygen reaction is accelerated in a cathode of a lithium-air battery to lower charging and discharging overvoltage and raise energy efficiency.
Abstract:
본 발명은 가지형 금속실리케이트를 이용한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체에 관한 것으로, 그 목적은 금속염을 실리카 물질에 담지시 가지형 금속실리케이트를 이용하여 촉매의 비표면적을 넓혀 기공을 발달시켜 20wt% 이상의 고농도로 금속입자를 균일하게 담지시킬 수 있고, 700 ℃ 부근의 고온 열처리에서도 금속 입자간의 소결이 잘 일어나지 않도록 하여 열적으로 안정한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체를 제공하는데 있다. 본 발명의 구성은 (i) 유기금속 화합물을 유기계면 활성제 및 유기용매와 함께 혼합하여 고온에서 분해시켜, 금속 또는 산화금속 또는 합금 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 제조된 나노 입자를 마이크로에멀젼을 이용하여 실리카로 코팅하는 단계; (iii) 상기 (ii)단계를 거친 금속/실리카 코어-쉘 구조체를 고온 수열반응을 이용하여 가지형 금속실리케이트 구조체로 전환시키는 단계; 및 (iv) 상기 (iii)단계에서 얻어진 금속실리케이트 구조체 분말을 고온 수소분위기하에서 환원시키면서 어닐링하여 실리카에 금속입자가 고담지된 촉매 담지체를 얻는 단계;를 포함하는 가지형 금속실리케이트를 이용한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체를 발명의 특징으로 한다.
Abstract:
본 발명의 일 측에 따른 피셔-트롭쉬 공정용 촉매는 조촉매로서 나트륨(Na)과 수산화나트륨(NaOH)를 포함함으로써 촉매 표면의 염기도를 증가시킬 수 있다. 이로 인해, 탄화물 형성 반응을 촉진시켜 왁스와 같이 긴 사슬의 탄화수소의 생성을 높일 수 있다. 또한, 본 발명의 일 측에 따른 피셔-트롭쉬 공정용 촉매는 350℃ ~ 400℃의 비교적 낮은 온도에서도 합성가스(CO+H 2 )가 존재하는 조건 하에서 환원(촉매의 활성 과정)시키면 공침법에 의해 제조된 촉매와 비교할 때 유사한 활성을 가질 수 있다.