Abstract:
본 발명은 가지형 금속실리케이트를 이용한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체에 관한 것으로, 그 목적은 금속염을 실리카 물질에 담지시 가지형 금속실리케이트를 이용하여 촉매의 비표면적을 넓혀 기공을 발달시켜 20wt% 이상의 고농도로 금속입자를 균일하게 담지시킬 수 있고, 700 ℃ 부근의 고온 열처리에서도 금속 입자간의 소결이 잘 일어나지 않도록 하여 열적으로 안정한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체를 제공하는데 있다. 본 발명의 구성은 (i) 유기금속 화합물을 유기계면 활성제 및 유기용매와 함께 혼합하여 고온에서 분해시켜, 금속 또는 산화금속 또는 합금 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 제조된 나노 입자를 마이크로에멀젼을 이용하여 실리카로 코팅하는 단계; (iii) 상기 (ii)단계를 거친 금속/실리카 코어-쉘 구조체를 고온 수열반응을 이용하여 가지형 금속실리케이트 구조체로 전환시키는 단계; 및 (iv) 상기 (iii)단계에서 얻어진 금속실리케이트 구조체 분말을 고온 수소분위기하에서 환원시키면서 어닐링하여 실리카에 금속입자가 고담지된 촉매 담지체를 얻는 단계;를 포함하는 가지형 금속실리케이트를 이용한 금속/실리카 촉매 담지체의 제조방법 및 그 금속/실리카 촉매 담지체를 발명의 특징으로 한다.
Abstract:
The present invention relates to a method for manufacturing an iron-carbide/silica nanocomposite catalyst for Fischer-Tropsch synthesis, to a catalyst thereof, to a method for synthesizing liquid hydrocarbon using the same, and to liquid hydrocarbon thereof. Provided are an iron-carbide/silica catalyst for Fischer-Tropsch synthesis, in which an iron-silicate structure having large specific surface area and having well developed pores is first formed by a hydrothermal reaction of silica particles with a nanostructure and an iron salt, and the same is activated in the presence of high temperature carbon monoxide to have high reactivity for Fischer-Tropsch synthesis, and a method for manufacturing the same. And provided are a method for effectively manufacturing liquid hydrocarbon based on high CO conversion ratio and selectivity by Fischer-Tropsch synthesis using the manufactured iron-carbide/silica composite catalyst, and liquid hydrocarbon thereof.
Abstract:
PURPOSE: A metal and silica doped catalyst and a manufacturing method thereof are provided to uniformly dip metal particles with 20 wt% or higher concentration by developing pores and be thermally stable by not causing sintering between the metal particles at 700°C of high temperature heat treatment. CONSTITUTION: A manufacturing method of a metal and a silica doped catalyst comprises the following steps: manufacturing metal, metal oxide, or an alloy nano particles by decomposing organometallic compounds at high temperature by mixing with organic surfactant and organic solvent; coating the nano-particles with silica using micro emulsion; converting the metal and silica core-shell structure into the branched metal silicate structure using a high temperature hydrothermal reaction; and obtaining metal doped catalyst which is high deposited in silica by reducing and annealing the metal silicate structure under a high temperature hydrogen condition. The metal or metal oxide nano-particle and alloy nano-particle are manufactured in a non-aqueous system. [Reference numerals] (AA) Metal salt + organic surfactant; (BB) Thermal reduction or decomposition; (CC) Metal or metal oxide nanoparticles; (DD) Silica coating using microemulsion; (EE) Metal or metal oxide/silica core-shell nanoparticles; (FF) Hydrothermal reaction; (GG) Branch type metal silicate structure; (HH) High temperature plasticizing or reduction; (II) Metal/silica doped catalyst