Abstract:
PURPOSE: A biosensor using a competitive bond and a device and a method for detecting biological samples using the same are provided, thereby indirectly detecting the biological samples using the competitive bond, so that the signal sensitivity of the biosensor can be increased. CONSTITUTION: A biosensor capable of selectively binding with the analyte-binding material(ABM) comprises a board, a metal thin layer on the board, biological sample-like materials having the similar structure to the biological samples and immobilized on the metal thin layer, wherein the biological sample is glucose; the ABM is concanavalin A, coenzyme-removed apo-glucose oxidase or glucose dehydrogenase; the board is glass; and the metal thin layer is gold thin layer. A device(200) for detecting biological samples(62) comprises (a) the biosensor(100) containing the metal thin layer(20) and biological sample-like materials having similar structure to the biological samples and immobilized on the metal thin layer; (b) a buffer solution(110) containing the biological samples and ABM; (c) a dielectric medium(120) formed on both surfaces of the glass board; (d) refraction rate matching oil between the glass board and the dielectric medium; (e) a light emitting portion(140) for applying light to the glass board through the dielectric medium; and (f) a light receiving portion(150) for measuring the light intensity reflected from the glass board.
Abstract:
PURPOSE: A low power consumption microfabricated thermal cycler and a method for fabrication of the same are provided, thereby accurately and minutely controlling the temperature of the reaction occurring area, so that it can be applied to various bio chips including PCR chip, protein chip, DNA chip, drug delivery system, micro biological/chemical reactor and lab-on-a-chip. CONSTITUTION: The low power consumption microfabricated thermal cycler comprises an upper board(112) and a lower board(100), wherein the upper board(112) comprises an fluid inlet(114) and outlet, a reaction chamber(118), and a fluid channel(116) connecting the inlet(114) and outlet to the reaction chamber(118); and the lower board(100) comprises an insulated heating thin layer(106) formed on the lower board(100), a heating means(102) formed on the insulated heating thin layer(106), a temperature sensor(104) formed on the insulated heating thin layer(106), and an insulating layer(108) covering the heating means(102) and the temperature sensor(104); and the insulated heating thin layer(106) is composed of Si3N4, SiO2, Si3N4/SiO2/Si3N4 or SiO2/Si3N4/SiO2 and has thickness of 0.1 to 10 micrometer.
Abstract:
PURPOSE: A method for performing multiplex PCR with cyclic changes of PCR parameters is provided, thereby preventing production of primer dimer and non-specific product, and reducing the time for screening optimal multiplex PCR conditions. CONSTITUTION: A method for performing multiplex PCR from a sample comprises cyclic changes of PCR parameters including the maturation temperature and the elongation time of a primer, wherein the sample includes blood, blood plasma, circular DNA(vector), cDNA library, genome or cell containing the genome; the maturation temperature and elongation time of the primer are increased at regular intervals; the maturation temperature is increased according to the value of Tmax - Tmin per 1 cycle and the elongation time is increased according to the value of £(Lmax - Lmin) DNA polymerization rate of taq DNA polymerase(bp/sec)| (total cycle - 7), in which Lmax is the sequence size of a largest PCR product(bp) and Lmin is the sequence size of a smallest PCR product(bp); and the volume of the sample is less than 1 microliter.
Abstract:
PURPOSE: A localized surface plasma sensor and a fabricating method thereof are provided to measure a non-labeling sample characteristic in real-time, to adjust resonance absorbing conditions of a surface plasma, and to measure a sample through a transmission mode by using alignment of metal structures. CONSTITUTION: According to a localized surface plasma sensor using aligned and nano-sized metal structures and a fabricating method thereof, the localized surface plasma sensor is used as an immunosensor. The metal structure has vital materials such as antibody fixed to a surface of the metal structure(200). Also, the localized surface plasma sensor using the aligned and nano-sized metal structures includes an immunity sensor for measuring density of antigen specifically bound to the antibody. If the localized surface plasma sensor is used as a spectroelectrochemical sensor, a ligand(510) is fixed to the surface of the metal structure(200).
Abstract:
An active ion-doped waveguide-plasmon resonance (AID WPR) sensor based on plasmon surface resonance (PSR) and an imaging system using the sensor are provided. An additional dielectric thin film doped with active ions and acting as a waveguide is formed on a metal thin film. The active ions are excited by an incident light beam and fluoresce light of a shorter wavelength than the incident light beam through upconversion coupled to surface plasmon resonance, thereby increasing fluorescence intensity variations with respect to incident light angle variations. The AID WPR sensor and the imaging system can detect a minor refractive index variation of a sample, which could not be measured using an existing SPR sensor, or a trace adsorbed material, with 100 times larger refractive index resolution than the existing SPR sensor.
Abstract translation:提供基于等离子体表面共振(PSR)的活性离子掺杂波导 - 等离子体共振(AID WPR)传感器和使用该传感器的成像系统。 掺杂有活性离子并用作波导的另外的电介质薄膜形成在金属薄膜上。 通过与表面等离子体共振耦合的上转换,活性离子被入射光束激发并发出比入射光束短的波长的光,由此相对于入射光角度变化增加荧光强度变化。 AID WPR传感器和成像系统可以检测样品的较小折射率变化,该变化无法使用现有SPR传感器或痕量吸附材料测量,其折射率分辨率比现有SPR传感器高100倍。
Abstract:
PURPOSE: A waveguide-plasmon resonance sensor and an image system are provided to improve sensitivity of the waveguide-plasmon resonance sensor by coating a dielectric thin film doped with active ions on a metal layer as a waveguide. CONSTITUTION: An active ion doped waveguide-plasmon resonance sensor includes a conductive film(122) for providing surface plasmon and a dielectric medium(110) aligned at one side of the conductive film(122). A light source(130) radiates incident light, which is incident into the conductive film(122) through the dielectric medium(110). A dielectric film is coated on the other side of the conductive film(122). A sample(123) is attached to the dielectric film. Active ions(171) are doped into the dielectric film. Active ions(171) are excited by incident light(131), thereby generating fluorescent light(139). A light receiving section(140) is provided to measure intensity of fluorescent light(139).
Abstract:
PURPOSE: Provided is a clad mold for producing optical fiber by a melting method which can be prepared economically in a simple process, and thereby it is possible to prevent a parent material of optical fiber from being contaminated by impurities and deteriorated in its quality. CONSTITUTION: The mold of clad(10) for producing a parent material of optical fiber comprises a clad mold(11) of a pipe shape having an end closed, a predetermined length and an inner diameter corresponding to a diameter of a clad; and a cylindrical core rod(12) attached to the closed end of the clad mold(11) in the same axis as the clad mold(11) and having a predetermined length and an outer diameter corresponding to a diameter of a core to be formed. The clad mold is prepared by (i) pouring melted glass to a hollow of the mold of clad(10), followed by solidifying the glass to form a clad; (ii) removing the clad mold(11); (iii) removing the core rod(12); and (iv) inserting a core rod into a hollow formed by removing the core rod in the step (iii).