Abstract:
A method of fabricating an avalanche photodiode for optical communications includes a step (a) of growing an n-InP buffer layer 2, In0.53Ga0.47As absorption layer 3 having a remaining impurity concentration of below 5X1015cm-3 and thickness of 1.5-3 m, undoped InGaAsP grading layer 8 in which the total thickness of layers having different bandgaps is 0.03-0.1 m, and n-InP charge sheet layer 9 having a doping concentration of 1-5X1017cm-3 and thickness of 0.1-0.2 m on an n+ InP substrate, to form a wafer, a step (b) of forming a charge plate layer 10 by dry or wet etching process using a dielectric material and photoresist, a step (c) of forming an n-- InP multiplication layer 11 having a doping concentration of below 5X1017cm-3 and thickness of 0.2-0.7 m and p+ InP layer 12 having a doping concentration of 2X1018cm-3 and thickness of 0.5-2 m using LPE on the charge plate layer 10, a step (d) of performing mesa etching using a dielectric material and photoresist, a step (e) of forming passivation layer and isolation layer using a polyimide 13, a step (f) of forming an anti-reflection layer 14 of SiNx, forming an opening for depositing a resistant metal on a predetermined portion of the p-InP layer 12 and depositing a p-metal 16, and a step (g) of carrying out lapping and depositing an n-metal 16.
Abstract translation:制造用于光通信的雪崩光电二极管的方法包括:生长n-InP缓冲层2,剩余杂质浓度低于5×1015cm-3的In0.53Ga0.47As吸收层3和厚度为1.5-3的步骤(a) m,未掺杂的InGaAsP分级层8,其中具有不同带隙的层的总厚度为0.03-0.1μm,以及掺杂浓度为1-5×10 17 cm -3的n-InP电荷层9和厚度为0.1-0.2μm, n + InP衬底,以形成晶片;使用电介质材料和光致抗蚀剂通过干蚀刻或湿法蚀刻工艺形成电荷层10的步骤(b);形成n-InP倍增层11的步骤(c) 掺杂浓度低于5X1017cm-3,厚度为0.2-0.7μm,p + InP层12的掺杂浓度为2×1018cm-3,厚度为0.5-2μm,使用LPE在电荷层10上,步骤(d) 使用介电材料和光致抗蚀剂进行台面蚀刻,形成p的步骤(e) 使用聚酰亚胺13的绝缘层和隔离层,形成SiNx的抗反射层14的步骤(f),在p-InP层12的预定部分上形成用于沉积耐金属的开口, 金属16,以及进行研磨和沉积n金属16的步骤(g)。
Abstract:
A light receiving device for optical communication is described that can improve the ability for receiving detection at a high speed operation and overcome the limit due to the resistance resulting from an ohmic contact. The light receiving device includes an n--InGaAs light absorbing layer 22 formed on an n+-InP substrate 21, an n--InP window layer 25 formed on the light absorbing layer 22, an n--InGaAs ohmic contact layer 26 formed on the n--InP window layer 25, an n--InP surface layer 27 and a p-n junction. The pn junction is formed when a p-type material diffusion layer 28 is diffused from a p+-InP surface layer 31 to the window layer 25. The p+-InP surface layer 31 is selectively etched so that a p-type metal electrode 16 contacts to a p+-InGaAs ohmic contact layer 30. The surface of the p-n junction has a part B exposed to InP which has a bigger band gap than InGaAs. Thereby, it is possible to improve the performance of the device and reliability and yield thereof.
Abstract:
an active layer(32) of a strained quantum well structure and a waveguide layer(33) formed on an InP substrate(31); a p-electrode metal stripe(38) having a width of "r" formed on a ridge comprising a cladding layer(34) and an ohmic contact layer(35); and a dielectric material(39) having an ohmic contact window stripe of "w" where, "w" is smaller than "r", and a p-side bonding pad metal(40) formed on the p-electrode metal stripe(38) in sequence.
Abstract:
n+ type InP epitaxial layer formed as a buffer layer on a substrate and n+ type InP substrate; n type In1-xAlxAs layer formed on the epitaxial layer; n+ type In1-xAlxAs layer formed on the In1-xAlxAs layer; an amplifying layer having superlattice structure; p type In1-xAlxAs layer formed on the amplifying layer in the usual order; an absorbing layer; p type InP layer for diminishing the surface leakage current In0.53Ga0.47As layer for ohmic contact.
Abstract:
forming a buffer layer, an absorbing layer, and the first grading layer sequentially; forming the second grading layer by doping some parts of the grading layer; growing a charge sheet carrier layer in some thickness; forming a pattern by etching selectively the charge sheet layer; and growing an amplifying layer on the grading layer and forming a p+-n junction by diffusion method.
Abstract:
본 발명은 고속광통신용 수광소자에 관한 것으로서, 종래에 p - 금속전극과 P + -lnP사이의 음접촉저항이 커서 소자의 면적을 줄이기 어렵고 고속동작에서 수신감도를 저하시키는 문제점을 해결하기 위하여 본 발명에서는 평면형 APD와 PIN수광소자의 제작에 있어 p + -InP 윈도우층위에 p-InGaAs층과 p-InP층을 형성하여 p-금속전극을 p-InGaAs층에 접합하도록 하여 음접촉저항을 적게하는 동시에 p-InP층으로 p-InGaAs층을 보호하여 표면누설 전류를 감소시키도록 함으로써, 수광소자의 저항을 감소시켜 고속동작시 성능향사응 기하고, 음접촉저항 성능의 향상으로 소자의 크기를 작게 할 수 있어 수광소자의 정전용량을 향상시켜 고속동작 특성을 향상시키고, 공정의 안정화를 통해 신뢰도와 수율을 향상시킬 수 있다.
Abstract:
본 발명은 광통신용 애벌렌치 포토다이오드 재조방법에 관한 것으로서, 차아지 플레이트층(10)을 형성한 후, 증폭층의 재성장이 요구되는 SAGCM-APD에서 LPE 성장법으로 재성장하여 평탄화를 쉽게 제어하고, LPE 성장시 p-InP(12)를 증폭층(11)위에 성장함으로써 확산공정을 제거하여 APD공정의 난점중 하나인 증폭층의 두께를 쉽게 제어하는 것으로서 구성됨으로써 LPE재성장시 pn 접합을 형성함으로써 평탄화가 쉽게 이루어져 있으므로, 기술적으로 경제적이며, 증폭층 두께를 쉽게 조절함으로써 APD 특성을 나타내는 이득 대역폭을 향상시킬 수 있다.