Abstract:
본 발명은 연료전지용 촉매전극을 위한 티타늄 서브옥사이드 지지체와 이의 저온 합성방법에 관한 것으로서, 더욱 상세하게는 연료전지의 촉매전극의 지지체로 유용한 티타늄 서브옥사이드(Ti x O 2x-1 ) 나노입자와, TiO 2 , Co 촉매 및 수소가스를 이용하여 600∼900℃의 낮은 온도에서 상기 티타늄 서브옥사이드(Ti x O 2x-1 ) 나노입자를 합성하는 방법에 관한 것이다. 상기 티타늄 서브옥사이드 나노입자는 산에 대한 부식저항성이 뛰어나고 열적, 전기적인 전기전도도가 크고, 내구성이 뛰어난 장점을 가지고 있으므로, 이를 지지체로 사용하여 제조된 촉매전극은 연료전지 테스트를 통해 높은 촉매활성과 산화환원 특성이 향상된 효과를 나타낸다.
Abstract:
PURPOSE: A proton-conducting polymer is provided to have a plurality of proton-conducting polymers, to have excellent dimensional stability, and to have high ion exchange capacity and hydrogen ion conductivity. CONSTITUTION: A proton-conducting polymer is represented by chemical formula 1. In the chemical formula 1: m is an integer from 0.01-0.99; n is an integer from 10-1,000; Y is a chemical bond, oxygen, or sulfur, independently; each of D and E is a divalent coupling group which comprises one or more selected from a substituted or unsubstituted C1-10 alkylene group, a substituted or unsubstituted C2-10 alkenylene group, a substituted or unsubstituted C6-20 arylene group, a sulfone group, or a carbonyl group; and Z is represented by chemical formula 2a.
Abstract:
PURPOSE: A method for manufacturing alloy catalyst based on conductive polymer protective coating is provided to improve dispersity by suppressing the size growth of catalytic particles based on the carbonization of conductive polymer. CONSTITUTION: A carbon immersed platinum catalyst is prepared. The surface of the platinum catalyst is coated with conductive polymer. Transition metal salt is immersed to the coated catalyst. The transition metal salt immersed catalyst is thermally treated. The carbon is one selected from carbon nano-tubes, carbon nano-fiber, carbon nano-coils, and carbon nano-cages. The conductive polymer is polypyrrole or polyaniline.
Abstract:
본 발명은 양친성 블록 공중합체 , 이의 제조방법 및 이를 이용한 연료전지용 막에 관한 것이다. 보다 상세하게는 소수부로서 PSEK[poly(arylene sulfone ether ketone)]과 친수부의 PSSAN[poly(sulfonated styrene-co-acrylonitrile)]을 포함하는 블록 공중합체에 관한 것이다. 상기 양친성 블록 공중합체를 이용하여 제조된 고분자 전해질 막은 100℃ 이상의 고온에서도 수소이온전도도가 감소하는 경향을 보이지 않고, 오히려 증가하는 경향을 보였으며, 높은 열적/화학적 치수안정성을 보인다.
Abstract:
본 발명은 탄소에 담지된 전이금속 나노입자 촉매의 제조방법에 관한 것으로서, 더욱 상세하게 설명하면 에탄올에 안정화제를 녹인 혼합액에 담지체를 넣어 분산액을 제조하고, 여기에 전이금속 전구체를 에탄올에 용해시킨 전구체 용액을 혼합 및 교반한 후 환원공정을 거쳐 전이금속 나노입자 촉매를 제조하는 것을 특징으로 한다. 본 발명의 탄소에 담지된 전이금속 나노입자 촉매의 제조방법은 간단한 공정으로 좁은 입자 크기 분포와 넓은 분산도를 가지는 탄소분말에 담지된 전이금속 나노입자의 제조가 가능하여 연료전지의 전극물질 등에 유용하게 적용될 수 있다. 연료전지, 전이금속, 수소화붕소나트륨, 안정화제, 나노입자
Abstract:
PURPOSE: A hydrophilic-hydrophobic block copolymer is provided to ensure excellent thermomechanical stability, and to obtain an electrolyte film for a polymer electrolyte fuel cell with excellent thermal, chemical, and mechanical stability while having high hydrogen ion conductivity at high temperature. CONSTITUTION: A hydrophilic-hydrophobic block copolymer comprises one or more of homopolymers having hydrophobicity and polymers having hydrophilicity. The hydrophobic part includes the structure represented by chemical formula 1 and the hydrophilic part includes the structure represented by chemical formula 2. In chemical formula 2, p, m and are mutually independent integer, and m > r.
Abstract:
PURPOSE: A poly(arylene ether) copolymer having a sulfonic acid group is provided to ensure high hydrogen ion conductivity and excellent mechanical properties due to high sulfonation degree and high average molecular weight. CONSTITUTION: A poly(arylene ether) copolymer having a sulfonic acid group is represented by chemical formula 3. A polymer electrolyte membrane comprises the poly(arylene ether) copolymer. The polymer electrolyte membrane further includes one or more polymers selected from the group consisting of polyimide, polyetherketone, polysulfone, polyethersulfone, polyetherethersulfone, polybenzimidazole, polyphenylene oxide, polyphenylene sulfide, polystyrene, polytrifluorostyrene sulfonic acid, polystyrenesulfonic acid, polyurethane, and branched sulfonated polysulfone ketone copolymers.
Abstract:
PURPOSE: An electrode for a polymer electrolyte membrane fuel cell is provided to reinforce mechanical strength and to maintain the thickness of a catalyst layer after long time driving by adding carbon nano fibers to an electrode catalyst layer of a fuel cell. CONSTITUTION: An electrode for a polymer electrolyte membrane fuel cell comprises, 100.0 parts by weight of a catalyst, 20~80 parts by weight of hydrogen ion conductive polymer electrolyte binder, 1~60 parts by weight of carbon nanofiber, 1~20 parts by weight of radical inhibitor. The carbon nano fiber is one selected from the group consisting of carbon nanotubes with 5~100 nm size, carbon nanofiber, carbon nanowires, carbon nanohorns, and carbon nanorings, and their mixture.
Abstract:
A membrane electrode assembly for a polymer electrolyte fuel cell is provided to improve the performance of a fuel cell due to low diffusion resistance to reactive gas and high limit current by employing a catalyst layer including micro pores. A membrane electrode assembly for a polymer electrolyte fuel cell comprises a platinum catalyst supported in carbon, a hydrogen-ion-conductive polymer, and a catalyst layer(11) including micropores(18) at both ends of the polymer electrolyte membrane. The catalyst layer additionally includes pores of 0.02~0.2 micron and micro pores of average 0.5~3 micron diameter.