Abstract:
The present invention relates to a titanium suboxide support for a catalyst electrode for a fuel cell and to a low-temperature synthesis method of the titanium suboxide support. More specifically, the present invention relates to titanium suboxide (Ti_xO_2x-1) nanoparticles which are useful as a support for a catalyst electrode for a fuel cell; and to a method for synthesizing the titanium suboxide (Ti_xO_2x-1) nanoparticles at a low temperature of 600-900°C by using TiO_2, a Co catalyst and hydrogen gas. The titanium suboxide nanoparticles have the advantage of having excellent corrosion resistance to acid, high thermal conductivity and electrical conductivity, and excellent durability. Therefore, the catalyst electrode manufactured by using the titanium suboxide nanoparticles as a support shows high catalytic activity and enhanced oxidation-reduction properties through a fuel cell test.
Abstract:
본 발명은 연료전지용 촉매전극을 위한 티타늄 서브옥사이드 지지체와 이의 저온 합성방법에 관한 것으로서, 더욱 상세하게는 연료전지의 촉매전극의 지지체로 유용한 티타늄 서브옥사이드(Ti x O 2x-1 ) 나노입자와, TiO 2 , Co 촉매 및 수소가스를 이용하여 600∼900℃의 낮은 온도에서 상기 티타늄 서브옥사이드(Ti x O 2x-1 ) 나노입자를 합성하는 방법에 관한 것이다. 상기 티타늄 서브옥사이드 나노입자는 산에 대한 부식저항성이 뛰어나고 열적, 전기적인 전기전도도가 크고, 내구성이 뛰어난 장점을 가지고 있으므로, 이를 지지체로 사용하여 제조된 촉매전극은 연료전지 테스트를 통해 높은 촉매활성과 산화환원 특성이 향상된 효과를 나타낸다.
Abstract:
PURPOSE: A catalyst electrode for a fuel cell is provided to improve catalyst activation and oxidation-reduction property due to high interaction with a catalyst through a fuel cell test by using titanium nitride as a supporter and to secure stability even in case of being operated in a long time. CONSTITUTION: A catalyst electrode for a fuel cell uses titanium nitride nitrided in titanium oxide through a thermal process as a supporter of a catalyst. A method for manufacturing the catalyst electrode for a fuel cell comprises the steps of: evenly spreading titanium oxide on a boat, putting the boat in an electric furnace, and flowing nitrogen gas to make a nitrogen atmosphere; flowing ammonia gas while raising the nitrogen atmosphere temperature to a preset temperature for a predetermined time; and nitriding the titanium oxide by maintaining the preset temperature for a predetermined time.
Abstract:
본 발명은 연료전지용 팔라듐-백금 코어-쉘 촉매의 제조방법에 관한 것으로, 보다 상세하게는 팔라듐 코어 위에 에피택시얼(epitaxial)하게 성장한 백금 쉘 나노입자를 합성하고 이를 탄소지지체에 담지하여 수소연료전지용 팔라듐-백금 코어-쉘 촉매를 제조함으로써 균일한 크기로 대량 생산이 가능하며, 고가의 금속 사용량을 감소시켜 제조단가를 낮출 수 있고, 우수한 전기촉매적 활성과 내구성 가지는 고효율의 수소연료전지 분야에 적용할 수 있는 연료전지용 팔라듐-백금 코어-쉘 촉매의 제조방법에 관한 것이다.
Abstract:
The present invention relates to a method for manufacturing palladium-platinum core-shell catalysts for fuel cells and, more specifically, to a method for manufacturing palladium-platinum core-shell catalysts for fuel cells which synthesizes platinum shell nanoparticles grown to be epitaxial on a palladium core, dips the platinum shell nanoparticles in carbon supporters and manufactures palladium-platinum core-shell catalysts for hydrogen fuel cells. Accordingly, the present invention is able to mass-product the palladium-platinum core-shell catalysts, is able to lower manufacturing costs by reducing metal consumption and is able to be applied to high efficiency hydrogen fuel cell fields requiring excellent electrocatalyst activity and durability.
Abstract:
본 발명은 코어-쉘 타입의 담지촉매 제조방법에 관한 것으로, 더욱 상세하게는 내외부가 상이한 코어-쉘(core-shell) 구조의 합금입자를 복합 탄소담지체 상에 담지하여 제조하는 코어-쉘 타입의 담지촉매 제조방법에 관한 것이다. 이를 위하여 본 발명은, 1) 안정화제를 이용하여 용매에 탄소담지체를 용해 분산시키는 단계; 2) 상기 1)단계의 용액에 코어 전구체를 용해시킨 후, 강환원제를 첨가하여 코어 전구체의 전이금속들을 탄소담지체의 표면에 환원 담지시키는 단계; 3) 상기 2)단계의 전이금속이 담지된 탄소담지체를 여과 및 세척하는 단계; 4) 상기 3)단계의 여과세척된 탄소담지체를 쉘 전구체 수용액에 재분산하는 단계; 5) 상기 4)단계의 용액에 60~80℃의 온도에서 약환원제를 첨가하여 쉘 전구체의 금속이온을 기합성된 전이금속 위에 선택적으로 환원시켜 석출되게 하는 단계;를 포함하는 것을 특징으로 하는 코어-쉘 타입의 담지촉매 제조방법을 제공한다.
Abstract:
PURPOSE: A method for manufacturing a core-shell type supported catalyst is provided to replace platinum with low cost of metal for reducing the cost of production. CONSTITUTION: A method for manufacturing a core-shell type supported catalyst comprises the following steps. A stabilizer allows a carbon supported element to be dissolved in a solution. A precursor of the core is dissolved in the solution before the transition metals of the core precursors with a strong reducing agent are supported on the surface of the carbon supported element. The carbon supported element with transition metals are filtered and washed. The carbon supported element is sprayed in the shell precursor solution. At a temperature of 60~80°C, a weak reducing agent is put into the solution and a metal ion of the shell precursor is reduced and obtained on the previously compounded transition metal. [Reference numerals] (AA) Core manufacturing step; (BB) Manufacturing carbon supported element using stabilizer; (CC) Dissolving/dispersing core precursor; (DD) Strong reduction; (EE) Filtering/washing; (FF) Shell manufacturing step; (GG) Dissolving/dispersing catalyst core powder in ethanol; (HH) Adding Pt salt; (II) Weak reduction; (JJ) Filtering/washing; (KK) Drying
Abstract:
PURPOSE: A manufacturing method of an electrode for a fuel cell is provided to continuously maintain a catalyst layer and a porous structure for operation of a fuel cell, to be able to manufacture a pore structure with various sizes and distributions, and to facilitate control of the catalyst layer and the porous structure. CONSTITUTION: A manufacturing method of a Catalyst layer-combined electrode for a polymer electrolyte membrane fuel cell comprises: a step of providing plate-like porous metal foam(2,2a,2b) or a metal aerogel having a porous structure of nanometer or micron size; a step of manufacturing a catalyst layer-integrated electrode by fixing a catalyst to the metal foam or metal aerogel. The manufacturing method additionally comprises a step of impregnating an ion-conducting material into the catalyst layer-integrated electrode. [Reference numerals] (AA,EE) Gas; (BB,FF) Liquid; (CC) Large pores; (DD) Small pores; (GG,JJ) Electron; (HH, II) Ion