Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous area and to include interior regions that are electrically discontinuous. The electrically continuous area may be patterned according to a one pattern, and the interior pattern may be patterned according to another pattern.
Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous area and to include interior regions that are electrically discontinuous. The electrically continuous area may be patterned according to a one pattern, and the interior pattern may be patterned according to another pattern.
Abstract:
Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. In one embodiment, the hardcoat composition further comprises and at least 30 wt-% solids of silica nanoparticles having an average particle size ranging from 50 to 150 nm. In another embodiment, the hardcoat composition further comprises and at least 30 wt-% solids of inorganic oxide nanoparticles having an average particle size ranging from 50 to 150 nm. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
Abstract:
Systems and methods for transferring learning in sensor devices. Historical time-series measurement samples of one or more parameters associated with a biological function being monitored by the sensor device are received and assigned to clusters. Feature data extracted from the historical time-series measurement samples are used to generate cluster-specific source-domain classifiers for each cluster. Unlabeled time-series measurement samples of the one or more parameters associated with the biological function are received. A cluster-identifier is assigned to each unlabeled target-domain sample, the cluster-identifier including information identifying a cluster-specific source-domain classifier associated with the unlabeled target-domain sample. Labeled time-series measurement samples of the one or more parameters associated with the biological function are received, feature data is extracted from the labeled samples and cluster-specific target-domain classifiers are generated for each cluster based on the source-domain classifiers and the feature data extracted from the labeled samples.
Abstract:
In one embodiment a transparent conductive component is described comprising a flexible transparent substrate; a transparent conductive layer disposed on the flexible transparent substrate; and a plurality of metal traces disposed on and in electrical communication with the transparent conductive layer. A portion of the flexible transparent substrate comprising the transparent conductive layer and metal traces forms an interconnect circuit tab. At least the interconnect circuit tab comprises a cured organic polymeric material disposed on the (e.g. patterned) transparent conductive layer and metal traces metal traces and flexible transparent substrate such that the cured organic polymeric material forms an exposed surface layer. The cured organic polymeric material is optionally disposed at the bezel region and/or at a central region of the transparent conductive component (e.g. touch sensor).
Abstract:
Designs for touch sensor circuitry and touch sensor incorporating such circuitry are described. More particularly, touch sensor circuitry including multiple elongate electrodes that are interleaved with one another is described.
Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous electrode trunk area, and including branching elements which extend outward from the electrode trunk area. The electrically continuous trunk area is patterned coincident an underlying reference mesh pattern, as are the branching elements.
Abstract:
An electrode layer has a plurality of substantially parallel electrodes disposed along a first direction. At least one electrode has a length along the first direction and a width from a first edge to a second edge along a second direction transverse to the first direction. At least one electrode comprises across its width at least one edge section, at least one intermediate section, and at least one central section, wherein an intermediate section is disposed along the electrode width between an edge section and the central section. At least one electrode edge section and intermediate section includes a plurality of electrically isolated regions arranged in a pattern along the electrode length. An electrode conductive area of the edge section is less than an electrode conductive area of the intermediate section.
Abstract:
A stretchable conductor includes a substrate with a first major surface, wherein the substrate is an elastomeric material. An elongate wire is on the first major surface of the substrate; the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Composite articles including a stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
Abstract:
Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.