Abstract:
An example system is described herein. The example system may include an inspection device comprising at least one image capture device, the at least one image capture device configured to capture a reference image of a sheet part. Additionally, the example system may include a processing unit configured to identify at least one primary point in the reference image and identify at least one secondary point in a mask image. The processing unit may transform the mask image based on the at least one primary point and the at least one secondary point. The processing unit may apply the transformed mask image to the reference image to identify an inspection region within the reference image, process the inspection region of the reference image to determine the quality of the sheet part, and output information indicative of the quality of the sheet part.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.
Abstract:
Systems and methods are directed to a device comprising a product status synchronization device. Examples of the product status synchronization device comprise a plurality of input ports and an encoder input, each of the input ports coupled to one of a plurality of registers and configured to receive a signal indicative of a status assigned to a product by one of a plurality of process stations, and to register the status assigned to the product into the one of the plurality of registers coupled to the input port, wherein one or more of the plurality of process stations are located at different distances from a predetermined location along a processing line and are configured to asynchronously process one or more products moving through the processing line.
Abstract:
This disclosure describes techniques for automatically controlling the operation of a slitter (40) to convert a web (20) of material into smaller slit rolls (64, 66, 68). A slitter director (60) may automatically control the operation of a slitter (40) for defect removal, web splicing, and/or slit roll rejection based on continually registering previously-generated anomaly data (62) with physical locations of the web (20).
Abstract:
System and methods used to inspect a moving web (112) include a plurality of image capturing devices (113) that image a portion of the web at an imaging area. The image data captured by each of the image capturing devices at the respective imaging areas is combined to form a virtual camera data array (105) that represents an alignment of the image data associated with each of the imaging areas to the corresponding physical positioning of the imaging areas relative to the web. The image output signals generated by each of the plurality of image capturing devices may be processed by a single image processor, or a number of image processors (114) that is less than the number of image capturing devices. The processor or processors are arranged to generate the image data forming the virtual camera array.
Abstract:
A system for measuring dimensions of film to be applied to a window includes a plurality of removable cards for placement on the window, each of the plurality of removable cards having a plurality of visible correspondence points at pre-defined positions on the respective removable card. The system further includes a mobile device having an image capture device, and the image capture device is configured to capture an image of the window having a set of correspondence points visible in the image. Additionally, the system includes a server configured to receive the image of the window captured by the mobile device and process the image to determine dimensions of a film to be cut for the window based on the set of correspondence points and the pre-defined positions, and processing the image removes perspective distortions in the image. The system is configured to output the dimensions of the film.
Abstract:
Machine learning-based systems are described for automatically generating an inspection recipe that can be utilized when inspecting web materials, sheet parts or other products for defects. One example method for generating an inspection recipe includes assigning, by processing circuitry, a pseudo-label to each image of a plurality of images based on the content of the image and a labeling model, and storing the pseudo-labeled images in a second set of images; extracting, by the processing circuitry, one or more features from each image of the plurality of images, and storing the one or more features as a feature list for the image; generating, by the processing circuitry, a decision tree based on the second set of images and the feature lists of the second set of images; generating, by the processing circuitry, an inspection recipe based on the decision tree, the inspection recipe comprising a plurality of classification rules; and outputting the inspection recipe.
Abstract:
System and methods used to inspect a moving web (112) include a plurality of image capturing devices (113) that image a portion of the web at an imaging area. The image data captured by each of the image capturing devices at the respective imaging areas is combined to form a virtual camera data array (105) that represents an alignment of the image data associated with each of the imaging areas to the corresponding physical positioning of the imaging areas relative to the web. The image output signals generated by each of the plurality of image capturing devices may be processed by a single image processor, or a number of image processors (114) that is less than the number of image capturing devices. The processor or processors are arranged to generate the image data forming the virtual camera array.
Abstract:
Optical films having an optical axis with an orientation that varies along a width of the optical film and having one or more indicia recording the orientation of the optical axis at a plurality of locations in the optical film are provided. Systems and methods for producing and for converting the optical films are provided.
Abstract:
Techniques are described for maintaining synchronization of inspection data when a web roll is converted into intermediate smaller rolls prior to cutting the web into individual parts. A system comprises a database that stores anomaly data acquired from a manufactured web. The anomaly data specifies positions anomalies within a manufactured web relative to a set of fiducial marks on the manufactured web. A conversion processing line comprises a fiducial mark reader to output position information for the set of fiducial marks on the manufactured web, a slitter that cuts the manufactured web into slit rolls, and a fiducial mark printer to print a set of fiducial marks on each slit roll. A position monitoring system maintains spatial synchronization of the anomaly data by computing an updated position for the anomalies relative to the set of fiducial marks printed on the slit rolls.