Abstract:
Methods of increasing skeletal muscle protein synthesis in a subject are provided. Methods of increasing or maintaining mammalian target of rapamycin (mTOR) activation are also provided. Such methods include a step of administering at least one serving per day of a composition including 20 to 2,000 mg of a green tea extract per serving to the subject.
Abstract:
Disclosed herein are shelf-stable, clear liquid nutritional compositions having a pH ranging from 2.5 to 4.6 and comprising water; at least one source of EGCg in an amount sufficient to provide 200-1700 mg/L of EGCg; and at least one source of protein in an amount sufficient to provide 25-45 g/L of total protein. The shelf-stable, clear liquid nutritional compositions lose no more than 20% by weight solids of the EGCg content present in the initial formulation of the compositions to epimerization, degradation, or both epimerization and degradation during heat sterilization. In certain embodiments, the loss of EGCg is exhibited by the amount of epimerization product GCg present in the shelf-stable, clear liquid nutritional composition following heat sterilization. Methods for preparing the shelf-stable, clear liquid nutritional compositions are also disclosed herein.
Abstract:
Disclosed are antibodies that specifically recognize Δ5-desaturase, methods of producing the antibodies, nucleotides and polypeptides for producing the antibodies, and methods of using the antibodies. The Δ5-desaturase-specific antibodies provide improved methods of detecting Δ5- desaturase in a sample.
Abstract:
The present invention is related to isolated polynucleotides encoding a delta-8 desaturase, delta-8 desaturases encoded by the isolated polynucleotides, expression vectors containing the isolated polynucleotides, host cells containing the expression vectors and methods for producing delta-8 desaturases and polyunsaturated fatty acids.
Abstract:
Disclosed herein are shelf-stable, clear liquid nutritional compositions having a pH ranging from 2.5 to 4.6 and comprising water; at least one source of EGCg in an amount sufficient to provide 200-1700 mg/L of EGCg; and at least one source of protein in an amount sufficient to provide 25-45 g/L of total protein. The shelf-stable, clear liquid nutritional compositions lose no more than 20% by weight solids of the EGCg content present in the initial formulation of the compositions to epimerization, degradation, or both epimerization and degradation during heat sterilization. In certain embodiments, the loss of EGCg is exhibited by the amount of epimerization product GCg present in the shelf-stable, clear liquid nutritional composition following heat sterilization. Methods for preparing the shelf-stable, clear liquid nutritional compositions are also disclosed herein.
Abstract:
Disclosed herein are methods for enhancing the efficacy of epigallocatechin gallate (“EGCg”) in mitigating skeletal muscle loss in a subject. Providing EGCg to a subject in a nutritional composition reduces muscle protein degradation, thereby mitigating skeletal muscle loss in the subject. The combination of EGCg with zinc in a nutritional composition enhances the mitigating effect that EGCg has on muscle loss. Specifically, when used in combination, a nutritional composition containing both EGCg and zinc requires less EGCg to obtain the same mitigating effect that occurs in the same nutritional composition containing EGCg but no zinc.
Abstract:
The present disclosure relates to isolated polynucleotides encoding a delta 9-elongase, delta 9-elongases encoded by the isolated polynucleotides, expression vectors comprising the isolated polynucleotides, host cells comprising the expression vectors, and methods for producing delta 9-elongase and polyunsaturated fatty acids.
Abstract:
Methods of increasing skeletal muscle protein synthesis in a subject are provided. Methods of increasing or maintaining mammalian target of rapamycin (mTOR) activation are also provided. Such methods include a step of administering at least one serving per day of a composition including 20 to 2,000 mg of a green tea extract per serving to the subject.
Abstract:
Methods of decreasing muscle function decline and improving muscle function in a subject are provided. The methods utilize an effective amount of epigallocatechin-3-gallate (EGCg) to increase the level of muscle vascular endothelial growth factor A (VEGF), to decrease myostatin levels, or both, and thereby decrease muscle function decline or improve muscle function. The EGCg may be provided as part of a nutritional composition.