Abstract:
Pre-charging display screen sub-pixels, such as aggressor sub-pixels, prior to the application of a target data voltage to the aggressor sub-pixels is provided. In some examples, a target voltage of a sub-pixel in a previous row in the scanning order of the display can be used to pre-charge sub-pixels. The row of sub-pixels to be pre- charged can be switched on during the updating of another row of sub-pixels. In this way, for example, target voltages applied to data lines while an update row is connected to the data lines, e.g., to update the update row, can be applied to the row to be pre-charged as well.
Abstract:
With respect to liquid crystal display inversion schemes, a large change in voltage on a data line can affect the voltages on adjacent data lines due to capacitive coupling between data lines. The resulting change in voltage on these adjacent data lines can give rise to visual artifacts in the data lines' corresponding sub-pixels. Various embodiments of the present disclosure serve to prevent or reduce persisting visual artifacts by offsetting their effects or by distributing their presence among different colored sub-pixels. In some embodiments, this may be accomplished by using different write sequences during the update of a row of pixels.
Abstract:
With respect to liquid crystal display inversion schemes, a large change in voltage on a data line can affect the voltages on adjacent data lines due to capacitive coupling between data lines. The resulting change in voltage on these adjacent data lines can give rise to visual artifacts in the data lines' corresponding sub-pixels. Various embodiments of the present disclosure serve to prevent or reduce these visual artifacts by applying voltage to a data line more than once during the write sequence. Doing so can allow erroneous brightening or darkening caused by large voltage swings to be overwritten without causing additional large voltage swings on the data line.
Abstract:
Methods and devices are provided for controlling the brightness of a display 12 for an electronic device 10 based on ambient light conditions. In one embodiment, an electronic device 10 may employ one or more brightness adjustment profiles 62, 130 that define response rates for changing brightness levels based on ambient light levels. The response rates may vary depending on the magnitude and/or direction of change in the ambient light levels. In certain embodiments, the response rates may be designed to approximate the physical response of the human vision system. Further, in certain embodiments, noise reduction techniques may be employed by adjusting the response rates based on the magnitude of the change in the ambient light level and/or based on whether the display is operating at steady state or executing a brightness adjustment.
Abstract:
A display may be formed by an array of light-emitting diodes mounted to the surface of a display substrate. The light-emitting diodes may be inorganic light-emitting diodes formed from separate crystalline semiconductor structures. An array of pixel control circuits may be used to control light emission from the light-emitting diodes. Each pixel control circuit may be configured to control one or more respective passive matrices. To control partial pixel cells in the display, a donor pixel control circuit in a partial pixel cell may control the pixels in a receptor partial pixel cell without a pixel control circuit. To mitigate the size of an inactive area of the display, fanout signal lines for the display may be formed in the light-emitting active area of the display. The fanout signal lines may be formed between a row of pixel control circuits and a bottom edge of the light-emitting active area.
Abstract:
Display panel redundancy schemes and redundancy building blocks are described. In an embodiment, pixel driver chips are connected to both primary and redundant strings of LEDs within a local passive matrix, and driver terminal switches within the pixel driver chip are used to select either the primary or redundant strings of LEDs.
Abstract:
An electronic display (18) may include an active area having a first pixel (70) formed in the active area, where the first pixel (70) emits light in response to image data (86). The electronic display (18) may also include a controller (60, 62, 54) to transmit the image data (86) to the first pixel (70). The first pixel (70) may include memory (78) to digitally store the image data (86) received from the controller (60, 62, 54) and driver circuitry (80) to receive the image data (86) from the memory (78). The driver circuitry (80) may cause light to be emitted in response to the image data (86).
Abstract:
A charge pump that can be configured to operate in a first mode and a second mode is disclosed. The charge pump can comprise a charging capacitor coupled to a first node and configured to transfer a first DC voltage to the first node. The charge pump can also comprise a first output node and a second output node coupled to the first node. During the first mode, the first output node can be configured to output a second DC voltage based on the first DC voltage, and the second output node can be configured to output a third DC voltage based on the first DC voltage. During the second mode, the first output node can be configured to output the second DC voltage, and the second output node can be configured to output an AC voltage, the AC voltage being offset by the third DC voltage.
Abstract:
Systems, methods, and devices for reducing the loss of transmittance caused by column inversion. To provide one example, an electronic display 18 may include a display panel 180 with columns of pixels 60 and driver circuitry 112 to drive the pixels 60 using column inversion. Adjacent columns 128 that are driven at like polarity are spaced more closely than adjacent columns 128 driven at opposite polarities.
Abstract:
Shunt structures, such as shunt lines, that can be positioned between two adjacent pixel electrodes in different rows of display pixels in a display screen are provided. A conductive shunt structure between two pixel electrodes can be configured for reducing a capacitive coupling between the pixel electrodes. The shunt structure can be connected to a voltage source, such as ground, an AC ground, etc. In this way, for example, a pixel-to-pixel capacitance between adjacent pixel electrodes can be reduced.