Abstract:
An optical membrane device (110) and method for making such a device (110) are described. This membrane is notable in that it comprises an optically curved surface (250). In some embodiments, this curved optical surface (250) is optically concave and coated, for example, with a highly reflecting (HR) coating to create a curved mirror. In other embodiments, the optical surface is optically convex and coated with, preferably, an antireflective (AR) coating to function as a refractive or diffractive lens.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore(113). The structure is fixed on a bench and is passively or ac tively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after thecomponents have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This mouvements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An integrated optical monitoring system comprises a hermetic package and an optical bench sealed within the package. An optical fiber pigtail enters the package via a feed-through to connectto and terminate above the bench. A tunable filter is connected to the top of the bench and filters an optical signal transmitted by the fiber pigtail. A detector, also connected to the bench, detects the filtered signal from the tunable filter. Thus, the entire system is integrated together, on a single bench within a preferably small package. This configuration makes the system useful as a subsystem, for example, in a larger system offering higher levels of functionality and optical signal processing capability.
Abstract:
A structure that is compatible with passive alignment, and is capable of integration onto a micro-optical bench system, provides for the secure attachment of optical components to the bench. The structure comprises a base and a clip structure for an optical component that is formed in the base. The clip structure can be etched into bulk material of the base. In one implementation, the clip structure is created using reactive ion etching in silicon or silicon-on-insulator (SOI) wafer material. In the preferred embodiment, the clip comprises an alignment wall and a resilient arm. The resilient arm engages a first side of the optical component to urge a second side of the optical component into engagement with the alignment wall. This cooperation between the arm and the alignment wall allows for precise registration of the optical component against the alignment wall to scales attainable with semiconductor lithography.
Abstract:
A tunable Fabry-Perot filter includes an optical cavity bounded by a stationary reflector and a deformable or movable membrane reflector. A second electrostatic cavity outside of the optical cavity includes a pair of electrodes, one of which is mechanically coupled to the movable membrane reflector. Voltage applied to the electrodes across the electrostatic cavity causes deflection of the membrane, thereby changing the length of the optical cavity and tuning the filter. The filter with the movable membrane can be formed by micro device photolithographic and fabrication processes from a semiconductor material in an integrated device structure. The membrane can include an inner movable membrane portion connected within an outer body portion by a pattern of tethers. The pattern can be such that straight or radial tethers connect the inner membrane with the outer body. Alternatively, a tether pattern with tethers arranged in a substantially spiral pattern can be used.
Abstract:
An optical coherence tomography system utilizes an optical swept source that frequency scans at least two different sweep rates. In this way, the system can perform large depth scans of the sample and then the same system can perform shorter depth high precision scans, in one specific example. In order to optimally use the analog to digital converter that samples the interference signal, the system further samples the interference signals at different optical frequency sampling intervals depending upon the selected sweep rates of the optical swept source. This allows the system to adapt to different sweep rates in an optimal fashion.
Abstract:
A microelectromechanical systems (MEMS)-tunable vertical-cavity surfaceemitting laser (VCSEL) in which the MEMS mirror is a bonded to the active region. This allows for a separate electrostatic cavity, that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
Abstract:
A multi semiconductor source tunable spectroscopy system has two or more semiconductor sources for generating tunable optical signals that are tunable over different spectral bands. The system enables the combination of these tunable signals to form an output signal that is tunable over a combined band including these individual spectral bands of the separate semiconductor sources. The system further compensates for spectral roll-off associated with the semiconductor sources. Specifically, near the limits of the semiconductor sources' spectral bands, the power in the tunable signal tends to degrade or decrease. The system compensates for this roll-off using drive current control, attenuators, or electronic compensation.
Abstract:
A semiconductor optical amplifier system (100) comprises a hermetic package (112). In the typical implementation, this hermetic package (112) is a standard butterfly, DIP or miniDIL package. An optical bench (116) is sealed within this package (112). A first fiber pigtail (118) enters this package via a feed-through to connect to the bench (116) and terminate above the bench. A second optical fiber pigtail (120) enters the package (112) via a second fiber feed-through to connect to the bench (116) and similarly terminate above the bench. A semiconductor amplifier chip (102) is connected to the bench (116) to provide amplification. Isolators (128, 130) are further incorporated along with a monitoring diode (126) to yield a fully integrated system.