Abstract:
A polishing apparatus which can measure a film thickness with high accuracy without affecting a polishing rate of a wafer is disclosed. The polishing apparatus includes: a polishing head configured to press a wafer against a polishing pad; an illuminating fiber having a distal end disposed in a flow passage formed in the polishing table; a spectrometer configured to resolve reflected light from the wafer in accordance with wavelength and measure an intensity of the reflected light at each of wavelengths; a light-receiving fiber having a distal end disposed in the flow passage; a liquid supply line communicating with the flow passage; a gas supply line communicating with the flow passage; a liquid supply valve attached to the liquid supply line; a gas supply valve attached to the gas supply line; and an operation controller configured to control operations of the liquid supply valve and the gas supply valve.
Abstract:
According to one aspect, a substrate processing apparatus is provided. The substrate processing apparatus includes a table provided with a substrate holding surface for holding a substrate, a pad for processing the substrate held on the table, a head for holding the pad, an actuator for moving the head in a direction perpendicular to the substrate holding surface of the table, and a mechanical stopper device for stopping a movement of the head in the direction perpendicular to the substrate holding surface.
Abstract:
A polishing method capable of obtaining a stable film thickness without being affected by a difference in measurement position is disclosed. The polishing method includes: rotating a polishing table that supports a polishing pad; pressing the surface of the wafer against the polishing pad; obtaining a plurality of film-thickness signals from a film thickness sensor during a latest predetermined number of revolutions of the polishing pad, the film thickness sensor being installed in the polishing table; determining a plurality of measured film thicknesses from the plurality of film-thickness signals; determining an estimated film thickness at a topmost portion of the raised portion based on the plurality of measured film thicknesses; and monitoring polishing of the wafer based on the estimated film thickness at the topmost portion of the raised portion.
Abstract:
An object of the present invention is to improve a substrate processing apparatus using the CARE method.The present invention provides a substrate processing apparatus for polishing a processing target region of a substrate by bringing the substrate and a catalyst into contact with each other in the presence of processing liquid. The substrate processing apparatus includes a substrate holding unit configured to hold the substrate, a catalyst holding unit configured to hold the catalyst, and a driving unit configured to move the substrate holding unit and the catalyst holding unit relative to each other with the processing target region of the substrate and the catalyst kept in contact with each other. The catalyst is smaller than the substrate.
Abstract:
A polishing apparatus capable of achieving a highly-precise polishing result is disclosed. The polishing apparatus includes an in-line film-thickness measuring device configured to measure a film thickness of the substrate in a stationary state, and an in-situ spectral film-thickness monitor having a film thickness sensor disposed in a polishing table, the in-situ spectral film-thickness monitor being configured to subtract an initial film thickness, measured by the in-situ spectral film-thickness monitor before polishing of the substrate, from an initial film thickness, measured by the in-line film-thickness measuring device before polishing of the substrate, to determine a correction value, add the correction value to a film thickness that is measured when the substrate is being polished to obtain a monitoring film thickness, and monitor a progress of polishing of the substrate based on the monitoring film thickness.