Abstract:
A method for obtaining a contact resistance of a planar device includes: obtaining a contact resistance of a planar device by using a potential measurement method, in the measurement of the surface potential distribution, the planar device is in a state of current flowing, a certain voltage drop is formed at a junction area of the device; extracting the voltage drop measured through the Kelvin microscope by using a linear fitting method; and dividing the measured voltage drop by the current flowing through the device, thereby accurately calculating the magnitude of the contact resistance at the junction area of the planar device. With the present invention, the contact resistance of the planar device can be precisely measured, which is suitable for the contact resistance measurement experiments of devices such as thin film transistors and diodes. The invention has the advantages of reasonable theory, accurate result, simple and easy operation, and is favorable for optimizing the device performance and establishing a complete electrical model of the device.
Abstract:
The present disclosure provides a self-rectifying resistive memory, including: a lower electrode; a resistive material layer formed on the lower electrode and used as a storage medium; a barrier layer formed on the resistive material layer and using a semiconductor material or an insulating material; and an upper electrode formed on the barrier layer to achieve Schottky contact with the material of the barrier layer; wherein, the Schottky contact between the upper electrode and the material of the barrier layer is used to realize self-rectification of the self-rectifying resistive memory. Thus, no additional gate transistor or diode is required as the gate unit. In addition, because the device has self-rectifying characteristics, it is capable of suppressing read crosstalk in the cross-array.
Abstract:
A selector for a bipolar resistive random access memory and a method for fabricating the selector are provided. The method includes: providing a substrate; forming a lower electrode on the substrate, where the lower electrode is made of a metal, and the metal is made up of metal atoms which diffuse under an annealing condition of below 400° C.; forming a first metal oxide layer on the lower electrode; performing an annealing process on the first metal oxide layer to make the metal atoms in the lower electrode diffuse into the first metal oxide layer to form a first metal oxide layer doped with metal atoms; forming a second metal oxide layer on the first metal oxide layer doped with metal atoms; forming an upper electrode layer on the second metal oxide layer; and patterning the upper electrode layer to form an upper electrode.
Abstract:
A method for manufacturing an NO2 gas sensor for detection at room temperature comprises: manufacturing a metal electrode on a surface of a flexible substrate; manufacturing an SWCNTs/SnO2 sensitive film; and bonding the SWCNTs/SnO2 sensitive film with a portion of the surface of the flexible substrate with the metal electrode, so as to form the NO2 gas sensor for detection at room temperature. The present disclosure solves the problems of the poor adhesion between the sensitive material and the flexible substrate, and a non-uniform distribution, and achieves the purposes of secure bonding between the sensitive material and the flexible substrate, and uniform distribution.
Abstract:
The present disclosure provides a semiconductor device based on a dielectric material containing a metal interstitial impurity, including: a substrate, a dielectric material layer, and a functional layer. A material for preparing the dielectric material layer is a compound containing the metal interstitial impurity. The dielectric material layer and/or the functional layer is configured to subject to at least one of electricity, heat, light or magnetism, such that the dielectric material layer reaches a crystallization temperature to transit from a first state to a second state.
Abstract:
A multi-resistance-state spintronic device, including: a top electrode and a bottom electrode respectively connected to a read-write circuit; and a magnetic tunnel junction between two electrodes. The magnetic tunnel junction includes from top to bottom: a ferromagnetic reference layer, a barrier tunneling layer, a ferromagnetic free layer, and a spin-orbit coupling layer. Nucleation centers are provided at two ends of the ferromagnetic free layer to generate a magnetic domain wall; the spin-orbit coupling layer is connected to the bottom electrode, and when a write pulse is applied, an electron spin current is generated and drives the magnetic domain wall through a spin-orbit torque to move; a plurality of local magnetic domain wall pinning centers are provided at an interface between the spin-orbit coupling layer and the ferromagnetic free layer to enhance a strength of a DM interaction constant between interfaces.
Abstract:
Disclosed is a memory, including a plurality of memory units, wherein each memory unit includes: a bulk substrate; a source electrode, a drain electrode and a channel region extending between a source region and a drain region that are located on the bulk substrate; a deep-level defect dielectric layer on the channel region; and a gate electrode on the deep-level defect dielectric layer. The memory of the present disclosure allows the memory unit to operate in the charge trapping mode and the polarization inversion mode. Therefore, the memory has functions of both DRAM and NAND, and combines the advantages of the two.
Abstract:
A RRAM and a method for fabricating the same, wherein the RRAM comprises: a bottom electrode; an oxide layer containing a bottom electrode metal, disposed on the bottom electrode; a resistance-switching layer, disposed on the oxide layer containing a bottom electrode metal, wherein the resistance-switching layer material is a nitrogen-containing tantalum oxide; an inserting layer, disposed on the resistance-switching layer, wherein the inserting layer material comprises a metal or a semiconductor; a top electrode, disposed on the inserting layer. By providing the to resistance-switching layer with a nitrogen-containing tantalum oxide, compared with Ta2O5, the RRAM of the present disclosure has a low activation voltage and a high on-off ratio, and can enhance the control capability over the device resistance by the number of oxygen vacancies.
Abstract:
An apparatus and a method for configuring or updating a programmable logic device are provided. The apparatus includes a control module and a storage module connected to the control module. The control module includes: a JTAG interface for connecting the control module to a JTAG host, and a configuration interface compatible with a to-be-configured programmable logic device. The control module is configured to: after receiving a first control instruction including configuration information via the JTAG interface, store the configuration information into the storage module; and after receiving a configuration instruction, read the configuration information to configure the to-be-configured programmable logic device. A configuration clock used in a process that the control module configures the to-be-configured programmable logic device is generated from the to-be-configured programmable logic device, the control module or an external clock source.
Abstract:
The present disclosure provides a method for preparing compound semiconductor sensitive film based on a displacement reaction-thermal oxidation method, the method comprising: growing a layer of Zn on a high temperature-resistant substrate; submerging the substrate on which the layer of Zn has been grown into ionic solution of soluble salt of Cu, such that Cu ions in the solution are displaced so as to separate Cu nano-particles out on a surface of the layer of Zn; and performing a thermal oxidation process on the layer of Zn to whose surface Cu nano-particles are adhered, such that the Cu nano-particles are oxidized into CuO nano-particles, so as to obtain a ZnO gas sensitive film that is doped with CuO nano-particles. The above preparing method has the following advantages: good filming quality, simplified preparation process, low cost and easy to control.