Abstract:
Embodiments of the invention include a resonant sensing system comprising driving circuitry to generate a drive signal during excitation time periods, a first switch coupled to the driving circuitry, and a sensing device coupled to the driving circuitry via the first switch during the excitation time periods. The sensing device includes beams to receive the drive signal during a first excitation time period that causes the beams to mechanically oscillate and generate a first induced electromotive force (emf) in response to the drive signal. The first switch decouples the sensing device and the driving circuitry during measurement time periods for measurement of the induced emf.
Abstract:
Embodiments of the invention include an acoustic transducer device having a base structure that is positioned in proximity to a cavity of an organic substrate, a piezoelectric material in contact with a first electrode of the base structure, and a second electrode in contact with the piezoelectric material. In one example, for a transmit mode, a voltage signal is applied between the first and second electrodes and this causes a stress in the piezoelectric material which causes a stack that is formed with the first electrode, the piezoelectric material, and the second electrode to vibrate and hence the base structure to vibrate and generate acoustic waves.
Abstract:
Embodiments of the invention include a communication module that includes a die having a transceiver and a phase shifter die that is coupled to the die. The phase shifter includes a power combiner and splitter. The communication module also includes a substrate that is coupled to the phase shifter die. The substrate includes an antenna unit with steerable beam forming capability for transmitting and receiving communications.
Abstract:
Communication is described between integrated circuit packages using a millimeter-wave wireless radio fabric. In one example a first package has a radio transceiver to communicate with a radio transceiver of a second package. The second package has a radio transceiver to communicate with the radio transceiver of the first package. A switch communicates with the first package and the second package to establish a connection through the respective radio transceivers between the first package and the second package. A system board carries the first package, the second package, and the switch.
Abstract:
Embodiments disclosed herein include package substrates and methods of forming such package substrates. In an embodiment a package substrate comprises a core with a first surface and a second surface opposite from the first surface. In an embodiment, a buildup layer is over the first surface of the core. In an embodiment, a channel is through the core, where the channel extends in a direction that is substantially parallel to the first surface.
Abstract:
Embodiments disclosed herein include package substrates and methods of forming such package substrates. In an embodiment the package substrate comprises a core and buildup layers on the core. In an embodiment, first level interconnect (FLI) pads are on a topmost buildup layer, and the FLI pads have a pitch. In an embodiment, a plurality of vertically oriented planes are embedded in the core, and the vertically oriented planes are spaced at the pitch.
Abstract:
Radio frequency (RF) data transfer between components in rack mounted systems is facilitated through the use of dielectric waveguides and millimeter Wave (mm-Wave) transceivers. A signal generator provides one or more data signals to a serializer/deserializer (SERDES) which serializes a plurality of parallel data signals to produce a single, serialized, signal containing data from each of the input signals to the SERDES. A mm-Wave die upconverts the serialized signal to a mm-Wave signal and a mm-Wave launcher launches the signal into the dielectric waveguide. At the receiving end the process is reversed such that the mm-Wave signal is first downconverted and passed through a SERDES to provide the original one or more signals to a recipient signal generator. Some or all of the components may be formed directly in the semiconductor package.
Abstract:
Waveguides disposed in either an interposer layer or directly in the semiconductor package substrate may be used to transfer signals between semiconductor dies coupled to the semiconductor package. For example, inter-semiconductor die communications using mm-wave carrier signals launched into waveguides specifically tuned to optimize transmission parameters of such signals. The use of such high frequencies beneficially provides for reliable transmission of modulated high data rate signals with lower losses than conductive traces and less cross-talk. The use of mm-wave waveguides provides higher data transfer rates per bump for bump-limited dies as well as beneficially providing improved signal integrity even at such higher data transfer rates. Such mm-wave waveguides may be built directly into semiconductor package layers or may be incorporated into one or more interposed layers that are physically and communicably coupled between the semiconductor dies and the semiconductor package substrate.
Abstract:
Embodiments of the present disclosure may relate to a transmitter that includes a baseband dispersion compensator to perform baseband dispersion compensation on an input signal. Embodiments may also include a receiver that includes a radio frequency (RF) dispersion compensator to perform RF dispersion compensation. Embodiments may also include a dielectric waveguide coupled with the transmitter and the receiver, the dielectric waveguide to convey the RF signal from the transmitter to the receiver. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.