Abstract:
A method of manufacturing a printed circuit board is disclosed. A method of manufacturing a printed circuit board, which includes: forming at least one interlayer connector on a first carrier, stacking at least one insulation layer on the first carrier such that the interlayer connector is exposed, removing the first carrier, and forming at least one circuit pattern on the insulation layer such that the circuit pattern is electrically coupled with the interlayer connector, can be used to increase the density of circuit patterns, as the method can provide electrical connection between circuit patterns and vias without using lands.
Abstract:
A printed circuit board and a method of manufacturing the printed circuit board are disclosed. A printed circuit board, which includes an insulation layer, a circuit pattern formed on a surface of the insulation layer that includes at least one pad, and a solder resist which covers the circuit pattern, and in which an opening is formed that exposes a portion of a side and a surface of the pad, can ensure a sufficient amount of attachment area for the pads and the solder resist, to strengthen the adhesion of the pads. Also, the adhesion can be increased between the electronic components and the printed circuit board, and heat release characteristics can be improved.
Abstract:
CMOS image sensors and related methods of fabricating CMOS image sensors are disclosed. Fabrication of a CMOS image sensor can include forming a first impurity region having a first conductivity type in a semiconductor substrate. A second impurity region having a second conductivity type is formed in the semiconductor substrate adjacent to the first impurity region. A third impurity region having the first conductivity type is formed in the semiconductor substrate and located below the second impurity region. A transfer gate is formed on the semiconductor substrate and at least partially overlaps the first, second, and third impurity regions. A photo sensitive device is formed in the semiconductor substrate and adjacent to one side of the transfer gate. A floating diffusion region is formed in the semiconductor substrate and located adjacent to an opposite side of the transfer gate from the photosensitive device.
Abstract:
A manufacturing method of a package substrate is disclosed. The method for manufacturing a package substrate is by forming a bump on a bump pad in a core board, where a first circuit pattern including the bump pad is formed on one surface, a second circuit pattern electrically connected with the first circuit pattern is formed on the other surface, and a dielectric layer is selectively coated on the one surface such that the bump pad is exposed. The method includes layering a conductive layer on the other surface of the core board, coating a plating resist on the conductive layer, forming the bump by supplying electricity to the conductive layer to electroplate the bump pad, and removing the plating resist and the conductive layer. This makes it possible to omit the coining process and increase the density of the circuit by forming a fine bump by an electro tin plating method with small plating thickness deviation without designing additional plating bus lines, and improves the electrical performance without remaining plating bus lines.
Abstract:
A package substrate is manufactured by electrolytically plating Au in a semi-additive manner without using any plating lead line. Such a package substrate includes a base substrate with a plurality of through holes, a first copper plated layer on portions of the base substrate and inner surfaces of the through holes, a plated pattern layer on the first copper plated layer, wire bonding pads on the plated pattern layer at an upper surface of the base substrate, the wire bonding pads including Au and not connected to a remnant of a plating lead line, solder ball pads on the plated pattern layer at a lower surface of the base substrate, the solder ball pads including Au and not connected to a remnant of a plating lead line, and a solder resist covering the base substrate and the plated pattern layer.
Abstract:
A semiconductor device and a method of fabricating the same are provided. The semiconductor device includes a first interlayer insulating layer including a first trench, on a substrate a first liner layer formed along a side wall and a bottom surface of the first trench and including noble metal, the noble metal belonging to one of a fifth period and a sixth period of a periodic chart that follows numbering of International Union of Pure and Applied Chemistry (IUPAC) and belonging to one of eighth to tenth groups of the periodic chart, and a first metal wire filling the first trench on the first liner layer, a top surface of the first metal wire having a convex shape toward a bottom surface of the first trench.
Abstract:
A method of manufacturing a printed circuit board is disclosed. A method of manufacturing a printed circuit board, which includes: forming at least one interlayer connector on a first carrier, stacking at least one insulation layer on the first carrier such that the interlayer connector is exposed, removing the first carrier, and forming at least one circuit pattern on the insulation layer such that the circuit pattern is electrically coupled with the interlayer connector, can be used to increase the density of circuit patterns, as the method can provide electrical connection between circuit patterns and vias without using lands.
Abstract:
An electro component package is disclosed. The electro component package in accordance with an embodiment of the present invention includes a first package substrate having a first chip mounted on an upper surface thereof, the first chip having a through-via formed therein; a second package substrate being separated from the first package substrate and having a second chip mounted on an upper surface thereof; and a connection substrate having one end connected with an upper surface of the first chip and the other end connected with an upper surface of the second chip, the connection substrate electrically connecting the first chip with the second chip.
Abstract:
Provided are a capsule-type image photographing apparatus and endoscopy using the same. The apparatus includes a shell unit having a globular shape and a main body unit capable of freely rotating in the shell unit. The main body unit includes an image photographing system, a wireless transmitter, a battery, a counterweight for determining the center of gravity of the main body unit, and an encapsulant for fixing the image photographing system, the wireless transmitter, the battery, and the counterweight. The apparatus may be a long-distance capsule-type image photographing apparatus or a short-distance capsule-type image photographing apparatus depending on the position of the counterweight. By use of the long- and short-distance capsule-type image photographing apparatuses, the interior of the tested person's body can be effectively photographed.
Abstract:
An image sensor may include a plurality of photodiodes for performing a photo-electric conversion and a plurality of microlenses. Each of the microlenses is formed over one of the photodiodes. The image sensor may further include a vertical light generating portion formed over the microlenses and configured to refract each of plurality of incident light rays such that the light rays are vertically incident on the microlenses.