Abstract:
A method of focused wireless power transmission is disclosed which includes generating a map for electromagnetic fingerprints at N locations within an environment of interest, including a transmitter and plurality of receivers each located at one of the N locations, transmitting pre-matched signals based on the electromagnetic fingerprints in a predetermined order for a first location of the N location, measuring response at each of the N locations, measuring spatial correlations between all other locations and the first location, and evaluating electromagnetic power focus at each of the N locations by comparing the measured spatial correlations.
Abstract:
A cavity resonator tuning diaphragm comprising a plurality of inner corrugations, the plurality of inner corrugations having a first depth. An outer corrugation located between the plurality of inner corrugations and a perimeter of the diaphragm is also included, the outer corrugation having a second depth greater than the first depth. The addition of the outer deep corrugation provides increased thermal stability and reduced required actuation voltage.
Abstract:
A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.
Abstract:
A system for measuring a physical characteristic of mechanical face seal includes a permanent magnet and a magnetic sensor. The permanent magnet is affixed to a structure proximate to a bearing surface of the mechanical face seal. The permanent magnet has a magnetic field that decreases as a function of temperature. The magnetic sensor is mounted on the mechanical face seal in a magnetic field sensing relationship with the permanent magnet. The magnetic sensor is configured to generate a voltage signal corresponding to a sensed magnetic field.
Abstract:
A tunable cavity resonator includes a housing, a post, and a controllably variable capacitive coupling. The housing defines an interior and has at least one side wall, a first end, and a second end. The post is located within the interior and extends from the first end to the second end. The post and the housing define a resonating cavity. The controllably variable capacitive coupling is disposed in the housing.
Abstract:
A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.
Abstract:
A waveguide assembly integrated with a semiconductor wafer is provided. The waveguide assembly includes a waveguide channel defined by internal walls of the wafer lined with a metallic layer, and having at least one port for transmission of the RF signal into or out of the waveguide channel. The waveguide assembly also includes a semiconductor obstacle member disposed in the waveguide channel. The waveguide assembly may be fabricated using etching and deposition processes for semiconductor devices. In use, selectively varying either one or both of frequency or power level of electromagnetic radiation applied to the obstacle member varies electrical conductance of the obstacle member, and thereby varies the electrical impedance of the obstacle member to transmission of the RF signal through the waveguide channel. The waveguide assembly may be used for switching, attenuating, routing, filtering, and transforming the RF signal.
Abstract:
A method of uniform RF-heating within a chamber is disclosed, which includes cyclically varying electromagnetic properties of a chamber according to a plurality of configuration, transmitting an alternating RF signal about a first frequency range between a first frequency and a second frequency from a transmitter into the chamber, measuring electromagnetic power at a random receiver location in the chamber for each of the plurality of configurations and at a predetermined resolution of frequency thereby generating a statistical distribution vs. frequency, applying a statistical test to the generated statistical distribution based on a predetermined statistical function, determining a standard deviation of the average received power as a function of frequency, choosing a third frequency range associated with a standard deviation lower than a second threshold, and choosing an operational frequency in the third frequency range which provides maximum heating depending on the material being heated.
Abstract:
A method of uniform wireless power distribution within a chamber is disclosed which includes measuring dimensional characteristics of a chamber, having a transmitter and a plurality of power harvesters, creating a statistical electromagnetic environment, evaluating statistical properties of the statistical electromagnetic environment, setting a new criterion for acceptable statistical properties of the statistical electromagnetic environment, measuring a lowest usable frequency of the chamber below which the statistical properties of the statistical electromagnetic environment are not acceptable according to a predetermined criterion, determining an efficiency profile of the plurality of power harvesters versus frequency at frequencies higher than the lowest usable frequency, selecting an operating frequency that maximizes efficiencies of the plurality of power harvesters, measuring a collective efficiency of the chamber, and returning to setting a new criterion if the measured collective efficiency is below a predetermined efficiency threshold.
Abstract:
A method of uniform RF-heating within a chamber is disclosed, which includes cyclically varying electromagnetic properties of a chamber according to a plurality of configuration, transmitting an alternating RF signal about a first frequency range between a first frequency and a second frequency from a transmitter into the chamber, measuring electromagnetic power at a random receiver location in the chamber for each of the plurality of configurations and at a predetermined resolution of frequency thereby generating a statistical distribution vs. frequency, applying a statistical test to the generated statistical distribution based on a predetermined statistical function, determining a standard deviation of the average received power as a function of frequency, choosing a third frequency range associated with a standard deviation lower than a second threshold, and choosing an operational frequency in the third frequency range which provides maximum heating depending on the material being heated.