Abstract:
Methods and apparatus for channel state information feedback are provided. In various aspects, a message is transmitted requesting channel feedback information. In some aspects, a first portion of the message is transmitted according to a first or second, and contains first information intended for a first or second set of wireless communication devices compatible with the first or second format respectively. In some aspects, a second portion of the first message is transmitted according to the second format, and contains second information intended for the second set of wireless communication devices compatible with the second format. In some aspects, the second message comprises a number of tones or spatial streams for which channel feedback information is requested, or other channel feedback information parameters.
Abstract:
Methods, systems, and devices are described for wireless communication at an AP. A station (STA) serving as a soft access point (SAP) in master mode may be configured to support communication over two radar channels (e.g., a primary and secondary channel) simultaneously. The STA may detect radar on the primary channel and move the primary channel to the secondary channel; meanwhile, the secondary channel may be moved to a channel in a non-radar subband. In some cases, the STA may establish a primary channel in a non-radar subband and then advertise a single bandwidth capacity. the STA may then perform a channel availability check (CAC) on a radar subband. If the CAC is successful, the STA may establish a secondary channel on the radar subband (or move the primary channel to the radar subband) and advertise a dual bandwidth capacity.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One example apparatus includes a memory that stores instructions. The apparatus further includes a processor coupled with the memory. The processor and the memory are configured to determine a total bandwidth for a transmission of a message, the total bandwidth including a plurality of tones. The processor is further configured to divide the plurality of tones in the total bandwidth into one or more 26-, 52-, 106-, 242-, or 996-tone blocks. The processor is further configured to determine an indication. The indication assigns one or more of the one or more tone blocks to a first wireless communication device. The apparatus further includes a transmitter configured to transmit the indication to at least the first wireless communication device or a second device.
Abstract:
A ranging operation between a first wireless device D1 and a second wireless D2 is performed by: sending (504), to the second wireless device, a data frame including a request for the second wireless device to report its actual SIFS duration to the first wireless device; determining (505) a time of departure (TOD) of the data frame; receiving (516), from the second wireless device, a response frame including SIFS information indicative of the actual SIFS duration of the second wireless device; determining (518) a time of arrival (TOA) of the response frame; and determining (522) a round trip time (RTT) of the data frame and the response frame using the TOD of the data frame, the TOA of the response frame, and the actual SIFS duration of the second wireless device. 501). Device D2 determines (508) the TOA of the received frame by capturing a time stamp, creates a response frame and determines (510) the TOD of the response frame, determines (512) ist actual SIFS duration, and embeds (514) the SIFS information into the response frame. The response frame is preferably an acknowledgement frame (ACK). Wireless devices D1 and D2 preferably include an SIFS database that stores a number of previously determined SIFS durations for the wireless device, one or more median SIFS durations for wireless device, and/or whether other wireless devices support ranging operations in accordance with the example embodiments. The exchange of ranging capabilities informs each of wireless devices D1 and D2 whether the other one supports capturing timestamps and/or is able to determine its own SIFS duration. In this manner, the ranging operations may be performed without estimating the SIFS duration of the second wireless device, thereby eliminating ranging errors resulting from uncertainties in the SIFS duration of the second wireless device.
Abstract:
This disclosure provides systems, methods, and apparatuses for wireless communication that can be used for channel puncturing. A wireless station (STA) may receive an indication of a first puncturing pattern to be used for transmitting or receiving data over a wireless channel, where the first puncturing pattern is defined by a first wireless communication protocol release and the STA is configured to operate according to a second wireless communication protocol release. The STA may select, from a set of puncturing patterns defined by the second wireless communication protocol release, a second puncturing pattern that includes one or more non-punctured subchannels that are subsets of one or more corresponding non-punctured subchannels of the first puncturing pattern. The STA may use the second puncturing pattern to transmit or receive one or more packets over the wireless channel.
Abstract:
This disclosure provides methods, devices and systems for interpreting reserved bits and values associated with different releases of a wireless communication protocol. In some implementations, a wireless communication device may determine whether to terminate or continue reception of a physical layer protocol convergence protocol (PLCP) protocol data unit (PPDU) if it detects a reserved bit in the physical layer preamble set to an unsupported value (such as a value different than what is defined by a version or release of the wireless communication protocol supported by the wireless communication device). In some other implementations, a wireless communication device may determine whether to terminate or continue reception of a PPDU if it detects a field in the physical layer preamble set to a reserved value (such as defined by a version or release of the wireless communication protocol supported by the wireless communication device).
Abstract:
This disclosure provides methods, devices and systems for wireless communication, and particularly, for generating or receiving a multi-generation physical layer protocol data unit (PPDU). The multi-generation PPDU may concurrently include a first generation-specific preamble based on a first generation of a wireless communication specification (such as that defined by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 family of standards) and a second generation-specific preamble based on a second generation of the wireless communication specification in a same transmission. The generation-specific preambles may be generated based on bandwidth portions of a wireless channel that each generation-specific preamble will occupy in the multi-generation PPDU. One or more of the generation-specific preambles may be modified based on an aggregate bandwidth of the multi-generation PPDU. This disclosure includes several options for modifying one or more generation-specific preambles or data fields to accommodate their use in a multi-generation PPDU.
Abstract:
This disclosure provides methods, devices and systems for data parsing for resource unit (RU) aggregation. A wireless communication device (such as an access point (AP) or a station (STA)) may allocate a set of resource units (RUs) for a receiving device in a basic service set (BSS). The set of RUs may be associated with multiple bandwidth segments of a bandwidth allocation and may be non-contiguous or contiguous. The wireless communication device may determine a data parsing and encoding scheme for a set of information bits. In some implementations, the encoded bits may be distributed to the set of RUs based on a distance to tone mapping value or pilot tone location or both of the aggregated set of RUs different than respective values or pilot tone locations of the RUs in the aggregated set of RUs.
Abstract:
Methods, systems, and devices for wireless communications are described for control signaling in next generation wireless local area network (WLAN) environments. A message transmitted by an access point may allocate resources to a plurality of stations. The access point may be configured to allocate up to 320 MHz of total bandwidth along with coarse punctures. The access point may also allocate up to eight space-time streams to each station in a multi-user multiple-input multiple output (MU-MIMO) transmission, and support simultaneous transmission to up to sixteen stations. To support 320 MHz bandwidth and up to sixteen stations, one or more signaling fields used in other environments may be repurposed to effectively signal the additional resources available in a next generation WLAN.
Abstract:
Methods, systems, and devices for wireless communication are described. The described techniques relate to improved methods, systems, devices, or apparatuses that support a 20 MHz station (STA) parked on a secondary channel. Without the described techniques, mechanisms to support secondary channel operation may be unable to receive management frames or broadcast traffic from an access point (AP), which may cause the STA to lose synchronization with the AP, miss a channel change or other critical announcement from the AP, etc. Considerations for providing such information to STAs parked on a secondary channel are discussed. In some examples, an AP may restrict resource unit allocation to the secondary channel on which the STA is parked. In some cases, a trigger-based random access mechanism may utilize aspects of the present disclosure to limit access to certain resource units to STAs on a given secondary channel.