Abstract:
The described techniques relate to improved methods, systems, devices, or apparatuses that support clear channel assessment adjustment for in-band link aggregation. Generally, the described techniques provide for improved handling of adjacent channel interference in multi-link aggregation scenarios. In accordance with the described techniques, a device may establish a set of wireless links for communication with a second device, the set of wireless links supporting parallel transmission during at least a first duration of a multi-link session, the set of wireless links including at least a first wireless link and a second wireless link. The device may identify a parameter value modifying a channel availability threshold to use during a channel access procedure for a first wireless channel of the first wireless link based on a presence of the second wireless link. The device may perform the channel access procedure for the first wireless channel based on the identified parameter value.
Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for generating wake-up radio (WUR) frames formats and implementing WUR communications between transmitting and receiving wireless devices. A transmitting wireless device may identify one or more intended receiving wireless devices for which to send a WUR frame. The transmitting wireless device may generate the WUR frame, where the WUR frame has a first portion that includes a first field. The first field may indicate whether the WUR frame is a fixed length frame or a variable length frame. The transmitting wireless device may also determine a frame check sequence (FCS) type for use with a WUR frame for transmission. The FCS portion may be capable of being one of a plurality of FCS types. The transmitting wireless device may transmit the WUR frame to the one or more intended receiving wireless devices.
Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for generating wake-up radio (WUR) frames formats and implementing WUR communications between transmitting and receiving wireless devices. A transmitting wireless device may identify one or more intended receiving wireless devices for which to send a WUR frame. The transmitting wireless device may generate the WUR frame, where the WUR frame has a first portion that includes a first field. The first field may indicate whether the WUR frame is a fixed length frame or a variable length frame. The transmitting wireless device may also determine a frame check sequence (FCS) type for use with a WUR frame for transmission. The FCS portion may be capable of being one of a plurality of FCS types. The transmitting wireless device may transmit the WUR frame to the one or more intended receiving wireless devices.
Abstract:
A wireless device may identify a transition from use of a main radio to use of a wakeup radio (WUR) of the wireless device is to occur. The wireless device may store the power state the main radio is operating in at the time of the transition. The wireless device may then power down the main radio and power up the WUR to perform the transition. Upon a transition back to use of the main radio from use of the WUR (e.g., in response to a wakeup transmission), the wireless device may power down the WUR and power up the main radio to the stored power state. Additionally, the wireless device may further store WUR power state information, such that upon exit and reentry of WUR operation, the wireless device may resume a previously used WUR power mode. Modified or newly defined uplink frames may indicate such power state transitions.
Abstract:
A method and an apparatus for wireless communication are provided. In one configuration, an apparatus is configured to transmit a wake-up radio (WUR) signal, to determine to transmit a second signal within a SIFS after transmitting the WUR signal to increase medium reuse, and to transmit the second signal within the SIFS after transmitting the WUR signal based on the determination. The second signal may be a data, management, control, ACK, or CF-end frame to enable legacy devices that do not decode the WUR signal to avoid wasted airtime cause by EIFS after the WUR signal. In another configuration, the apparatus is configured to transmit a CTS-to-self frame, to determine to transmit a second signal within a SIFS after transmitting the CTS-to-self frame, and to transmit the second signal based on the determination. The second signal may be a WUR signal or an intermediate signal followed by a WUR signal.
Abstract:
Methods, systems, and apparatuses for wireless communications are described. Stations operating within a system may have a primary radio and a wakeup or low-power radio. Access points (APs) may send indications receivable by the wakeup radio to alert a station of a pending data transmission for the station. APs may transmit synchronization beacons for wakeup radios of the stations, and the transmission timing for the synchronization beacons may be adapted based on operating conditions of one or more stations. For example, an AP may skip transmissions of a synchronization beacon or may adapt the frequency of synchronization beacon transmissions based on various operating conditions or factors. Stations may report certain information about operating conditions or capabilities that may be used to adapt synchronization beacon transmissions.
Abstract:
Methods, systems, and devices for wireless communication are described. Methods, systems, and devices provide for determining or identifying a client device that is monopolizing a channel associated with a first basic service set (BSS). Once identified, a second BSS is dynamically created and configured with parameters that are throttled with respect to the first BSS. The client device is steered to the second BSS and is prevented from reassociating with the first BSS until a change in device status.
Abstract:
A first AP in a wireless network determines that a wireless client device should re-associate from the first AP to a second AP of the wireless network. The first AP communicates an AP coordination message from the first AP to the second AP to share coordination information with the second AP. The first AP coordinates with the second AP to cause the re-association of the wireless client device in accordance with the coordination information. The first and second AP may coordinate directly to synchronize re-association activities. Re-association activities may include the use of a configuration message to the wireless client device, managing transmit power of beacon messages from the first and second APs, or forced disassociation and blocking. The first AP may maintain a record of which re-association activity was successful in causing the wireless client device to re-associate to the second AP.
Abstract:
Certain aspects of the present disclosure relate to wireless communications and, more particularly, to multi-link communications. A method that may be performed by an access point (AP) multi-link device (MLD) includes establishing a plurality of links for communication with a non-AP MLD, wherein one or more non-AP MLDs, including the non-AP MLD, communicate with the AP on each link of the plurality of links and taking one or more actions designed to ensure that the non-AP MLD is able to receive a group addressed frame. The non-AP MLD is operating in an enhanced multi-link single radio (EMLSR) mode.
Abstract:
This disclosure provides methods, devices and systems for protecting latencysensitive communications during restricted target wake time (r-TWT) service periods (SPs). Some implementations more specifically relate to coordinated scheduling of r-TWT SPs between OBSSs. In some aspects, a first AP may coordinate with a second AP in scheduling r-TWT SPs so that latency-sensitive traffic in a first BSS does not interfere or collide with latency-sensitive traffic in a second BSS overlapping the first BSS. In some implementations, the first and second APs may schedule their respective r-TWT SPs to be orthogonal in time. In some other implementations, the first and second APs may schedule their r-TWT SPs to overlap in time, while allocating coordinated resources to concurrent or overlapping latency-sensitive traffic in the first and second BSSs (such as in accordance with one or more multi-AP coordination techniques).