Abstract:
A getter structure and method wherein a layer of seed material is deposited on a predetermined region of a surface of a structure under conditions to form a plurality of nucleation sites on a surface of the structure. The nucleation sites have an average height over the surface area of the predetermined region of less than one molecule thick. Subsequently a getter material is deposited over the surface to form a plurality of getter material members projecting outwardly from the nucleation sites.
Abstract:
An electronic device and methods of manufacture thereof. One or more methods may include providing a lid wafer having a cavity and a surface surrounding the cavity and a device wafer having a detector device and a reference device. In certain examples, a solder barrier layer of titanium material may be deposited onto the surface of the lid wafer. The solder barrier layer of titanium material may further be activated to function as a getter. In various examples, the lid wafer and the device wafer may be bonded together using solder, and the solder barrier layer of titanium material may prevent the solder from contacting the surface of the lid wafer.
Abstract:
A focal plane array includes a mosaic integrated circuit device having a plurality of discrete integrated circuit tiles mounted on a motherboard. The focal plane array includes an optically continuous detector array electrically connected to the mosaic integrated circuit device with an interposer disposed therebetween. The interposer is configured to adjust a pitch of the continuous detector array to match a pitch of each of the plurality of discrete integrated circuit tiles so that the optical gaps between each of the plurality of integrated circuit tiles on the motherboard are minimized and the detector array is optically continuous, having high yield over the large format focal plane array.
Abstract:
An imaging and asynchronous laser pulse detector (ALPD) device, imaging cell of the imaging and ALPD device and method of use is disclosed. A detector generates an electrical signal in response to receiving an optical signal, wherein a frequency of the electrical signal is indicative of a frequency of the optical signal. A first detection/readout circuit is sensitive to a first frequency range, and a second detection/readout circuit is sensitive to a second frequency range. The first detection/readout circuit allows the electrical signal to pass from the first detection/readout circuit to the second detection/readout circuit.
Abstract:
An imaging and asynchronous laser pulse detector (ALPD) device, imaging cell of the imaging and ALPD device and method of use is disclosed. A detector generates an electrical signal in response to receiving an optical signal, wherein a frequency of the electrical signal is indicative of a frequency of the optical signal. A first detection/readout circuit is sensitive to a first frequency range, and a second detection/readout circuit is sensitive to a second frequency range. The first detection/readout circuit allows the electrical signal to pass from the first detection/readout circuit to the second detection/readout circuit.
Abstract:
A scene projector including an array of light emitting pixels, a tunable filter element, and a spatial light modulator. The tunable filter element is optically coupled to the array of light emitting pixels such that light emitted from the array of light emitting pixels is passed through the tunable filter element as filtered light. The spatial light modulator is optically coupled to the array of light emitting pixels and is configured to generate transmitted light by interacting with the filtered light to control at least one of an amplitude, a phase, and a polarization of the filtered light.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
Methods for reducing wafer bow induced by an anti-reflective coating of a cap wafer are provided. The method may utilize a shadow mask having at least one opening therein that is positioned opposite recessed regions in a cap wafer. The method may further include depositing at least one layer of an anti-reflective coating material through the shadow mask onto a planar side of a cap wafer to provide a discontinuous coating on the planar side.
Abstract:
A structure for detecting electromagnetic radiation having a predetermined wavelength. The structure includes a device wafer having a sensing element disposed on a predetermined region of a surface of the device wafer responsive to the electromagnetic radiation. A cover wafer is provided having a region thereof transparent to the electromagnetic radiation for passing the electromagnetic radiation through the transparent region onto a surface of the sensing element. A bond gap spacer structure is provided for supporting the surface of the sensing element from an opposing surface of the transparent region of the cover wafer a distance less than a fraction of the predetermined wavelength when. the cover wafer is bonded to the device wafer.