Abstract:
A dual wall component includes a first outer wall extending from a leading edge to a trailing edge, a first inner wall spaced from the first outer wall by a plurality of first cavities and first ribs, a second inner wall spaced from the first inner wall by a plurality of second cavities and second ribs, and a second outer wall extending from the leading edge to the trailing edge and spaced from the second inner wall by a plurality of third cavities and third ribs. Portions of the first and second outer walls have thicknesses less than about 0.018″ (0.457 mm). In a method for forming a dual wall component, component walls are formed by additive manufacturing and without using cores to form the cavities.
Abstract:
A surface structure having a filmhole pattern is disclosed. The filmhole pattern may be an offset herringbone pattern (52). For instance, the surface structure may have rows of filmholes arranged in filmrows (55), each filmrow (55) divided into groups of filmholes. A first group may be oriented to direct cooling air generally outward over a surface of the surface structure and a second group may be oriented to direct cooling air generally inward over a surface of the surface structure. Between the first group and the second group of filmholes in each filmrow (55), a transition region exists. The adjacent filmrows (55) are arranged to enhance the effectiveness of the convective cooling proximate to the transition regions by causing each filmrow (55) to direct cooling air over the transition region of an adjacent filmrow (55).
Abstract:
An assembly for a turbine engine includes a plurality of vane segments. The vane segments are fastened together and form an adjustable stator vane that pivots about a variable vane axis. The adjustable stator vane includes a stator vane body, a shaft and a flange. The stator vane body extends axially between a first end and a second end, and includes an airfoil, a body surface and a cavity. The body surface is located at the first end. The cavity extends axially from an inlet in the body surface and into the airfoil. The shaft extends along the variable vane axis from the first end. The flange extends circumferentially at least partially around the inlet, and radially from the stator vane body. A first of the vane segments includes the flange. A second of the vane segments includes at least a portion of the airfoil.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a platform that axially extends between a leading edge and a trailing edge and circumferentially extends between a first mate face and a second mate face and a trench disposed on at least one of the first mate face and the second mate face. A plurality of cooling holes are axially disposed within the trench.
Abstract:
A casting core assembly (140) includes a metallic core (144, 146, 148), a ceramic core (142) having a compartment (186) in which the portion of the metallic core is received, and a ceramic coating (260) at least partially covering the metallic core and the ceramic core.
Abstract:
A gas turbine engine component includes a structure having a wall that provides an exterior surface. A first cooling passage is arranged adjacent to and interiorly of the wall. A second cooling passage is arranged in the wall and provides a first fluid flow direction. A resupply channel is arranged in the wall and is fluidly interconnected to the second cooling passage. A resupply hole fluidly interconnects the first cooling passage and the resupply channel. The resupply channel is transverse relative to the second cooling passage to provide a second fluid flow direction that extends from the resupply hole to the second cooling passage.
Abstract:
In a featured embodiment, a gas turbine engine has a compressor section having a downstream rotor and a diffuser downstream of the compressor section. A combustor receives air downstream of the diffuser. A turbine section has at least one component to be cooled. A conduit is spaced from the diffuser and defines a cooling airflow path. The cooling airflow path is separate from an airflow downstream the diffuser, and passing to the combustor. The conduit passes cooling air to the component to be cooled.
Abstract:
An airfoil includes a leading edge, a trailing edge region, a suction surface, a pressure surface, a cooling passageway, and a column of flow separators. The suction surface and the pressure surface both extend axially between the leading edge and the trailing edge region, as well as radially from a root section of the airfoil to a tip section of the airfoil to define a central cavity of the airfoil. The cooling passageway is located within the central cavity at the trailing edge region. The column of flow separators is located in the cooling passageway adjacent the trailing edge and includes a first flow separator having a first longitudinal axis and a second flow separator having a second longitudinal axis. The first longitudinal axis is offset at an angle with respect to the first longitudinal axis.
Abstract:
A component for a gas turbine engine according to an exemplary embodiment of the present disclosure includes, among other possible things, a platform having a non-gas path side and a gas path side, an airfoil extending from the gas path side of the platform, and a cover plate positioned adjacent to the non-gas path side of the platform. The cover plate can include a first plurality of openings that communicate a first portion of a cooling air to a first cooling cavity of the platform and a second plurality of openings that can communicate a second portion of the cooling air to the second cooling cavity that is separate from the first cooling cavity. Each of the first cooling cavity and the second cooling cavity can include a plurality of augmentation features.