Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, an airfoil that includes a first sidewall and a second sidewall joined together at a leading edge and a trailing edge and extending from a base to a tip. A plenum is defined inside the airfoil. A first cooling cavity merges into the plenum and a second cooling cavity merges into the plenum. A rib extends from at least one of the first sidewall and the second sidewall at least partially into the plenum to separate the first cooling cavity from the second cooling cavity.
Abstract:
An airfoil includes leading and trailing edges; first and second sides extending from the leading edge to the trailing edge, each side having an exterior surface; a core passage located between the first and second sides and the leading and trailing edges; and a wall structure located between the core passage and the exterior surface of the first side. The wall structure includes a plurality of cooling fluid inlets communicating with the core passage for receiving cooling fluid from the core passage, a plurality of cooling fluid outlets on the exterior surface of the first side for expelling cooling fluid and forming a cooling film along the exterior surface of the first side, and a plurality of cooling passages communicating with the plurality of cooling fluid inlets and the plurality of cooling fluid outlets. At least a portion of one cooling passage extends between adjacent cooling fluid outlets.
Abstract:
A casting core assembly (140) includes a metallic core (144, 146, 148; 360; 380; 400) and a ceramic core (142). A protuberant portion (184) of a metallic core is received in compartment (186) of the ceramic core.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including a component. The component includes a platform having a mateface on a circumferential side thereof. The platform including a core passageway configured to communicate fluid to the mateface.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, an body portion that extends between a leading edge and a trailing edge. At least one of the leading edge and the trailing edge includes at least one discharge slot having a first portion that includes an oval geometry.
Abstract:
An airfoil includes an airfoil body that defines a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. A lattice network connects the first side and the second side. The lattice network includes at least one enlarged node spaced apart from the first side wall and the second side wall and ribs that extend from the at least one enlarged node. Each of the ribs connects to one of the first side wall and the second side wall.
Abstract:
A turbine engine system includes a heat source, a heat exchanger, a cooling medium inlet and a cooling medium outlet. The heat source includes a first passage. The heat exchanger includes a second passage and a third passage. The first and the second passages are configured in a closed loop circuit. The third passage is configured between the inlet and the outlet in an open loop circuit.
Abstract:
A turbine engine stator vane is provided that rotates about an axis, and includes an airfoil, a flange and a shaft. The airfoil extends axially between a first airfoil end and a second airfoil end. The airfoil includes a concave side surface, a convex side surface and a cavity. The concave and the convex side surfaces extend between an airfoil leading edge and an airfoil trailing edge. The cavity extends axially into the airfoil from a cavity inlet in an end surface at the second airfoil end. The flange is connected to the second airfoil end. The flange extends circumferentially around at least a portion of the cavity inlet, and radially away from the concave and the convex side surfaces to a distal flange edge. The shaft extends along the axis, and is connected to the second airfoil end.
Abstract:
An airfoil includes an airfoil body that defines a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall to define a camber line there between. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. Multiple ribs extend longitudinally in the cavity and are laterally spaced apart from each other relative to the longitudinal axis. In at least one plane that is perpendicular to the longitudinal axis, each of the ribs connects the first side wall and the second side wall along respective minimum distance directions that are perpendicular to the camber line. At least two of the respective minimum distance directions are non-parallel.
Abstract:
An airfoil includes an airfoil body that defines a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first sidewall and a second sidewall that is faced apart from the first sidewall. The first sidewall and the second sidewall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. A damper member is enclosed in the cavity. The damper member includes a first end and a second end. The first end is connected in a first joint to the first sidewall at a first longitudinal location and the second end is connected in a second joint to the second sidewall at a second, different longitudinal location.