Abstract:
A method for controlling a wind turbine, comprising: receiving a signal indicative of a power reference for the wind turbine; determining a variability parameter based on the signal; determining a structural oscillation parameter associated with the wind turbine; correlating the variability parameter and the structural oscillation parameter; and generating an action signal in dependence on the result of the correlation. The invention extends to and therefore embraces a system for controlling a wind turbine including a wind turbine controller that is configured to receive a signal indicative of an external power reference for setting the power generation level of the wind turbine, wherein the controller analyses the signal thereby to determine a variability parameter of the signal, determines a structural oscillation parameter associated with the wind turbine, and correlates the variability parameter and the structural oscillation parameter, and generates an action signal in dependence on the result of the correlation.
Abstract:
The invention relates to a method for wind turbine generators for reducing electrical disturbances in the form of power variations which are caused by damping controllers arranged the compensate structural oscillations by inducing shaft torque variations. The shaft torque variations are generated by imposing corresponding variations in a generator set-point, e.g. a power or torque set-point. Variations in the generator set-point cause undesired variations in the power injected to the grid by one or more wind turbine generators. According to an embodiment of the invention the electrical disturbances may be reduced by limiting a damping controller's control action. The amount of limitation or restriction of the damping controller may be determined on basis on electrical disturbance information determined from power measured e.g. at a location on the grid.
Abstract:
Embodiments of the present disclosure generally relate to apparatus and methods for preventing power dips associated with power ramping in wind turbines. One embodiment of the present disclosure provides a method for stabilizing power output in a wind turbine, which includes tracking a rate of change in an external reference, such as an external power reference or external torque reference, computing a feed-forward pitch angle adjustment according to the rate of change in the external power reference, and sending the feed-forward pitch angle adjustment to the wind turbine to adjust a pitch angle of rotor blades simultaneously with adjusting power output according to the external reference.
Abstract:
A method of estimating an amount of undesired loading experienced by at least a portion of a structure(100) is provided. The structure(100) may be, for example, a wind turbine generator (WTG) and the portion for which undesired loading is estimated may be, for example, a rotor (130) of the WTG. The method includes receiving a first signal characterizing instantaneous stress experienced by a component (140) of the structure(100) and filtering out at least a portion of the received first signal that corresponds to the desired loading experienced by the component to produce a first filtered signal. The amount of undesired loading experienced by the at least a portion of the structure(100) is estimated based at least partially on the first filtered signal.
Abstract:
A method of controlling a wind turbine having a rotor and a generator for producing power, the method comprising the steps of: obtaining an operational parameter, the operational parameter representing the loading experienced by the wind turbine due to a turbulence intensity acting on the rotor of the wind turbine; controlling the wind turbine in dependence on the operational parameter by altering at least one of a rotational speed setpoint of the rotor and a minimum pitch setpoint of a blade of the rotor; wherein the step of obtaining the operational parameter comprises: determining a rotor power produced by the rotor; and calculating a standard deviation of the rotor power over a period of time.
Abstract:
The present invention relates to control of a wind turbine to reduce structural loading due to vibrations of the blades along the edgewise direction. A rotor control system for actuating pitch of pitch-adjustable rotor blades of a wind turbine is disclosed. Pitch modification signals are determined based on edgewise load signals for each of the rotor blades. The edgewise load signal are coordinated transformed and input into a primary whirling controller unit to provide whirling signal components which can be used for determining the pitch modification signals.
Abstract:
The present invention relates to a rotor control system for actuating pitch of pitch adjustable rotor blades in order to reduce vibrations of a wind turbine element, e.g. tower vibrations. A pitch modification signal is determined which is based on an m-blade coordinate transformation, such as the Coleman transformation. The m-blade coordinate transformation taking as input a first signal and a second signal. The second signal is determined by filtering the first signal with a signal filter with a quadrature phase shift filter phase response.
Abstract:
A method for wind turbine tower damping is disclosed, as well as an associated controller and wind turbine. The method comprises generating, using at least a first sensor signal, a first pitch reference signal for one or more rotor blades of a wind turbine during partial load operation. The method further comprises determining, using at least a second sensor signal, dynamic state information for a tower of the wind turbine. The method further comprises generating a second pitch reference signal by adapting the first pitch reference signal using the dynamic state information. The method further comprises selecting a maximum pitch reference signal from the second pitch reference signal and a saturation pitch reference signal. The method further comprises communicating the maximum pitch reference signal to control a pitch of the one or more rotor blades.
Abstract:
A method for controlling a wind turbine is disclosed, the wind turbine comprising a set of wind turbine blades (1), each wind turbine blade (1) being provided with at least one air deflector (2) being movable between an activated position in which it protrudes from a surface of the wind turbine blade (1) and a de-activated position. The occurrence of an event causing a change in operational conditions is registered, and a new operating state for the wind turbine is determined, the new operating state meeting requirements of the changed operational conditions. The air deflectors (2) of the wind turbine blades (1) and pitch angles of the wind turbines blades (1) are controlled in order to reach the new operating state for the wind turbine, and in such a manner that the control of the pitch angles of the wind turbine blades (1) is performed while taking information regarding the control of the air deflectors (2) into account.
Abstract:
A wind turbine control system comprising at least one control module configured to output a control signal for a control mechanism of a wind turbine, and a gain calculator for calculating a gain parameter associated with the control module, wherein the gain parameter is calculated based on a computerised real-time blade model using a determined wind turbine operating point as an input. The blade model may be a blade element momentum model. In another aspect, the invention may be expressed as a method of controlling a control mechanism of a wind turbine.