Abstract:
Under consideration here is a method for the production of periodic nanostructuring on one of the surfaces of a substrate (10), presenting a periodic network of dislocations, embedded within a crystalline area (4) located in the neighborhood of an interface (5) between the crystalline material surfaces of two components (1, 2) assembled by bonding to form the substrate (10). It comprises the following steps: formation, in the dislocations (3), of implants (6) made of a material other than that of the crystalline area (4); irradiation of the substrate (10) with electromagnetic waves (11) in order to cause absorption of electromagnetic energy localized in the implants (6), this absorption leading to the appearance of the periodic nanostructuring (12) on the surface of the substrate (10).
Abstract:
Under consideration here is a method for the production of periodic nanostructuring on one of the surfaces of a substrate (10), presenting a periodic network of dislocations, embedded within a crystalline area (4) located in the neighbourhood of an interface (5) between the crystalline material surfaces of two components (1, 2) assembled by bonding to form the substrate (10). It comprises the following steps: formation, in the dislocations (3), of implants (6) made of a material other than that of the crystalline area (4); irradiation of the sbstrate (10) with electromagnetic waves (11) in order to cause absorption of electromagnetic energy localised in the implants (6), this absorption leading to the appearance of the periodic nanostructuring (12) on the surface of the substrate (10).
Abstract:
The present invention relates to a method and apparatus for patterning a substrate. The method comprises providing at least one magnetic pattern generator (100b) configured and operable to modulate the magnetic field to induce varying magnetic properties to a magnetic field according to a desired pattern; applying the modulated magnetic field in the vicinity of the substrate (102) creating a certain pattern of regions of interaction to be obtained on top of the substrate; and; interacting the substrate with magnetic particles (106), while under the application of the modulated magnetic field, the magnetic particles being attracted to selected regions of interaction defined by the certain pattern while being substantially not attracted to regions outside the regions of interaction, thus creating on top of the substrate the certain pattern of regions interacted with the magnetic particles. The desired pattern corresponds to a certain pattern for a predetermined magnetic field profile and at a predetermined distance from the magnetic pattern generator, where the sample is to be located.
Abstract:
Il s'agit d'un procédé de réalisation d'une nanostructuration périodique sur une des faces d'un substrat (10) présentant un réseau de dislocations périodique, enterré au sein d'une zone cristalline (4) située au voisinage d'un interface (5) entre des faces en matériau cristallin de deux éléments (1, 2) assemblés par collage pour former le substrat (10). Il comprend les étapes suivantes : -formation, au niveau des dislocations (3), d'implants (6) en un matériau autre que celui de la zone cristalline (4); -irradiation avec une onde électromagnétique (11) du substrat (10) pour provoquer une absorption d'énergie électromagnétique localisée au niveau des implants (6), cette absorption conduisant à l'apparition de la nanostructuration (12) périodique sur la face du substrat (10).
Abstract:
Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.
Abstract:
Un procédé de réalisation d'au moins un motif sur une face supérieure d'un support 1 en un matériau présentant une première conductivité thermique, comprend la disposition d'un masque 7, en un matériau présentant une deuxième conductivité thermique et comportant au moins un évidement 8 ayant une forme correspondant à celle du motif, en contact avec une face inférieure du support 1, le rapport de la première conductivité sur la seconde conductivité étant supérieur ou égal à 2, ou inférieur ou égal à 1/2, pendant la durée du procédé. Le procédé comprend en outre une étape de dépôt sur la face supérieure d'une solution comprenant un matériau destiné à former le motif, et une étape d'évaporation de la solution.
Abstract:
Il s'agit d'un procédé de réalisation d'une nanostructuration périodique sur une des faces d'un substrat (10) présentant un réseau de dislocations périodique, enterré au sein d'une zone cristalline (4) située au voisinage d'un interface (5) entre des faces en matériau cristallin de deux éléments (1, 2) assemblés par collage pour former le substrat (10). Il comprend les étapes suivantes : -formation, au niveau des dislocations (3), d'implants (6) en un matériau autre que celui de la zone cristalline (4); -irradiation avec une onde électromagnétique (11) du substrat (10) pour provoquer une absorption d'énergie électromagnétique localisée au niveau des implants (6), cette absorption conduisant à l'apparition de la nanostructuration (12) périodique sur la face du substrat (10).
Abstract:
Three-dimensional polymeric article (100) having first (101) and second (102) opposed major surfaces, a first dimension perpendicular to a second dimension, a thickness orthogonal to the first and second dimensions, and a plurality of alternating first (107) and second (109) polymeric regions along the first or second dimensions, wherein the first (107) and second (108) regions extend at least partially across the second dimension, wherein the first regions (107) are in a common plane (115) and wherein some of the second regions (108) project outwardly from the plane (115) in a first direction (generally perpendicular from the plane), and some of the second regions (108) project outwardly from the plane (115) in a second direction that is generally 180 degrees from the first direction, where the first regions (107) have a first crosslink density, wherein the second regions (108) have a second crosslink density, and wherein the second crosslink density of the second regions (108) are less than the first crosslink density of the first regions (107). Embodiments of the articles are useful for example, for providing a dual-sided, textured wrapping film such that greater grip is realized both on an item wrapped by the film and the wrapped item itself.
Abstract:
An approach includes a method of fabricating a switch. The approach includes forming a first fixed electrode and a second fixed electrode, forming a first cantilevered electrode aligned vertically over the first fixed electrode and the second fixed electrode, and operable to directly contact the second fixed electrode upon an application of a voltage to the first fixed electrode, forming a second cantilevered electrode aligned vertically over the second fixed electrode, and which has an end that overlaps the first cantilevered electrode, and forming a hermetically sealed volume encapsulating the first fixed electrode, the second fixed electrode, the first cantilevered electrode, and the second cantilevered electrode.