Abstract:
The invention relates to a method for separating useful pulses and test pulses in scintillation detectors, preferably for the detection of ionising radiation. Said method comprises at least the following steps: a pulsed test light source, preferably a pulsed LED, is selected, the individual test light pulses having a temporal course of the relative light intensity which differs from the temporal course of the relative light intensity of the measuring light pulses; the test light pulses generated by the test light source are introduced into the light detector of the scintillation detector for measuring the test light pulses by means of the light detector; the temporal course of the relative light intensities of the pulses measured by the scintillation detector is evaluated; and the measured pulses are separated into test light pulses and measuring light pulses by using the different temporal course of the relative light intensities.
Abstract:
An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
Abstract:
The present invitation relates to an optical radiation measurement method based on light filter units, comprising the steps of: 1) providing characteristic filter units and correction light filter units in front of detection units to obtain multiple measured response values of an object to be detected; and, 2) selecting one or more sampling regions within a waveband to be detected, and calculating, according to a corresponding simultaneous expression/equation system of the measured response values, a spectral power distribution within the waveband to be detected. In this method, by introducing a small number of correction light filter units, the spectral power distribution within the entire waveband to be detected can be obtained without using a large number of narrow waveband color filters. In addition, a light radiation measurement apparatus is disclosed.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on data gathered from one or more ambient light sensors (ALSs). In one suitable arrangement, an ALS may include a photodiode, a temperature sensor, a scaler, an analog-to-digital converter (ADC), and a subtractor. The subtractor may have a first input coupled to the photodiode via the ADC, a second input coupled to the temperature sensor via the scaler, and an output on which a leakage-compensated sensor output is provided. In another suitable arrangement, the ALS may include first and second photodiodes, a light blocking layer formed over the second photodiode, a scaler, and a subtractor. The subtractor may have a first input coupled to the first photodiode, a second input coupled to the second photodiode via the scaler, and an output on which a leakage-compensated sensor output is provided.
Abstract:
An apparatus, a microscope having an apparatus, and a method for calibration of a photosensor chip (19) are disclosed. The apparatus has a photosensor chip (19) which has a multiplicity of light-sensitive elements. A reference light source (30) is provided and directs the light at at least one part of the photosensor chip (19). In addition, an open-loop or closed-loop control unit (19a) is provided and determines and corrects variances between the individual light-sensitive elements.