Abstract:
A long wave infrared imaging polarimeter (LWIP) is disclosed including a pixilated polarizing array (PPA) in close proximity to a microbolometer focal plane array (MFPA), along with an alignment engine for aligning and bonding the PPA and MFPA and method for assembly.
Abstract:
The invention concerns a tandem interferometer for temperature sensing. The low coherence interferometry (LCI) system comprises a polarization-based sensing interferometer comprising a birefringent crystal having a sensor temperature sensitivity and a birefringence dispersion, and a readout interferometer being either a Fizeau interferometer using an optical wedge or a polarization interferometer using a birefringent wedge. In one embodiment of the invention, the birefringent crystal has dispersion properties similar to that of the birefringent wedge or that of the optical wedge of the readout interferometer. The present invention also provides a signal processing method for correcting the dispersion effect and for noise filtering in LCI-based optical sensors of the tandem interferometer arrangement.
Abstract:
A method and apparatus for measurement of at least one of brightness, flow velocity and temperature of radiant media are provided. A substantially collimated beam of light having a selected frequency is directed to a linear polariser. The linearly polarised output is directed to an electro-optically active birefringent crystal to separate the output into two characteristic waves and to introduce a first fixed phase delay between the characteristic waves. The birefringent crystal is selectively electro-optically modulated to introduce a second variable phase delay between the characteristic waves and the characteristic waves are combined to interfere prior to detection.
Abstract:
A method of daytime imaging in a range of thermal wavelengths (3-5 microns) which includes specularly reflected solar radiation. Mathematical processing serves to separate the thermal and specular reflection components based on Fresnel's equations which relate the thermal component to three variables: the total radiation intensity; the degree of polarization of the total radiation; and the degree of polarization of the specular reflection component. The first two of these variables may be measured by means of a photometer which is scanned across a target area, and a suitably oriented polarizing filter. The third variable can be calculated as a function of two other quantities: the angle of incidence of sunlight on the target object and the index of refraction of the target object. The first of these two quantities is calculable from time and geographical position data, while the second can be estimated with sufficient accuracy. Each calculation produces a single pixel, and a succession of such pixels is used to build up an image upon a CRT raster which is synchronized with the photometer scan.
Abstract:
The present invention relates to imaging and in particular to multi-spectral imaging which relies on sampling the time-domain optical coherence at appropriately chosen set of delays. The invention has been developed primarily for use as a multi-coherence imaging system and arrangements of the invention comprise a polarizing image mask for providing angularly multiplexed, dual orthogonal polarized beams, each beam being a replica of an incoming radiation beam from a source, the polarising image mask comprising a first Wollaston prism as a first polarizing component for providing angularly multiplexed radiation beams from the incoming radiation beam, the beams being multiplexed in a first direction; and a split field polarizer comprising adjoining, orthogonally oriented polarizing materials for providing angularly multiplexed, dual orthogonal polarized radiation beams.
Abstract:
Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.