Abstract:
Described are devices, methods, and systems that are suitable for rapidly and simultaneously determining the concentration of suspended particles in a sample. The devices, methods, and systems allow for the rapid and simultaneous interrogation of a large number of sample wells in a single vessel, for example, samples contained in a two- dimensional array or micro-titer plate, without the need for moving reading heads or moving the sample vessel. The nephelometry system allows the user to rapidly and simultaneously measure the concentration of the particles in numerous samples, adjust the concentration of the particles in the sample with a sample handling system, and re-measure the concentration of the samples in order to achieve a desired concentration.
Abstract:
A system (500) for detecting emissions from a sample containing nucleotide molecules contains a sample holder (501), an optical illumination system (612), and an optical sensor (620). The sample holder includes a plurality of spatially separated reaction sites configured to hold a sample containing nucleotide molecules. The optical illumination system comprises a radiant source (610) configured to simultaneously illuminate two or more of the reaction sites. The illumination system includes a homogenizer (112). An output from the homogenizer has less variation in power, energy, irradiance, or intensity than the variation in power, energy, irradiance, or intensity of the source.
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte
Abstract:
A diagnostic assay system including a test device and a scanning device are described. In one implementation, the scanning device includes a source of electromagnetic radiation, an optics assembly, a detector, and a microprocessor disposed within a chassis. The test device and scanning device may be configured to be movable relative to each other during operation of the scanning device.
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on e.g. microtitration plates and corresponding sample supports. The object of the invention is achieved by providing an optical measurement instrumentation wherein a sample (281-285) is activated (212AS, 218AS) and the emission is detected (291, 292), wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and means (218) directing the activation radiation to the sample as well as in the relative position between the sample and the means (293) receiving the emission radiation from the sample. This can be implemented e.g. by moving (299) the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.