Abstract:
A system for conducting a capillary electrophoresis assay includes a light source, an interface, and an illumination optical system. The light source is configured to provide a source beam of electromagnetic radiation. The interface is configured to receive a plurality of capillaries containing one or more target molecules or sequence of molecules. The illumination optical system is configured in use to produce a plurality of output beams from the source beam and to direct each of the output beams to corresponding capillary of the plurality of capillaries.
Abstract:
A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
Abstract:
An instrument (1000) for processing and/or measuring a biological process contains an excitation source (110), a sample holder (204), an optical sensor (118), an excitation optical system (120), and an emission optical system (125). The sample holder (204) is configured to receive a plurality of biological samples. The optical sensor (118) is configured to receive an emission from the biological samples. The excitation optical system (120) is disposed along an excitation optical path (126) and is configured to direct the electromagnetic radiation from the excitation source (110) to the biological samples. The emission optical system (125) is disposed along an emission optical path (128) and is configured to direct electromagnetic emissions from the biological samples to the optical sensor (118). The instrument further contains a plurality of filter assemblies (130, 132) configured to be interchangeably located along at least one of the optical paths. The plurality of filter components (131) includes a first filter component (138) characterized by a first optical power and a first filter (140) having a first filter function, the first filter function characterized by at least one of a first low-pass wavelength or a first high-pass wavelength. The second filter assembly (142) is characterized by a second optical power and a second filter (145) having a second filter function, the second filter function comprising at least one of a second low-pass wavelength that is different than the first low-pass wavelength or a second high-pass wavelength that is different than the first high-pass wavelength. The second optical power differs from the first optical power by an amount sufficient to at least partially compensate for an aberration introduced by the second filter (145) relative to the first filter (140).
Abstract:
A system (500) for detecting emissions from a sample containing nucleotide molecules contains a sample holder (501), an optical illumination system (612), and an optical sensor (620). The sample holder includes a plurality of spatially separated reaction sites configured to hold a sample containing nucleotide molecules. The optical illumination system comprises a radiant source (610) configured to simultaneously illuminate two or more of the reaction sites. The illumination system includes a homogenizer (112). An output from the homogenizer has less variation in power, energy, irradiance, or intensity than the variation in power, energy, irradiance, or intensity of the source.
Abstract:
An article for holding a plurality of biological samples includes a substrate a substrate comprising a first surface and an opposing second surface and a plurality of reaction sites in the substrate. Each of the reaction sites extends from an opening in the first surface to an opening in the second surface. The reaction sites comprise a hexagonal shape and are configured to provide sufficient surface tension by capillary action to hold respective biological samples. The reaction sites have a density over at least a portion of the surfaces that is at least 170 holes per square millimeter. At least one of the surfaces may have a surface roughness characterized by an arithmetic average roughness (Ra) that is less than or equal to 5 nanometers.
Abstract:
A system for determining the number of target nucleotide molecules in a sample includes a sample holder, an excitation optical system, an optical sensor, and an emission optical system. The sample holder is configured to receive an article comprising at least 20,000 separate reaction sites. The excitation optical system comprises a light source configured to simultaneously illuminate the at least 20,000 separate reaction sites. The optical sensor comprises a predetermined number of pixels, the predetermined number of pixels being at least 20 times the number of separate reaction sites. The emission optical system comprises a system working distance from the sample holder, wherein the working distance is less than or equal to 60 millimeters.
Abstract:
A biological analysis system is provided. The system comprises an interchangeable assembly configured to accommodate any one of a plurality of sample holders, each respective sample holder configured to receive a plurality of samples. The system also includes a control system configured to cycle the plurality of samples through a series of temperatures. The system further includes an optical system configured to detect fluorescent signals emitted from the plurality of samples. The optical system, in particular, can comprise a single field lens, an excitation source, an optical sensor, and a plurality of filter components. The excitation source can be one or more light emitting diodes. The field lens can be a bi-convex lens.
Abstract:
A system for determining the number of target nucleotide molecules in a sample includes a sample holder, an excitation optical system, an optical sensor, and an emission optical system. The sample holder is configured to receive an article comprising at least 20,000 separate reaction sites. The excitation optical system comprises a light source configured to simultaneously illuminate the at least 20,000 separate reaction sites. The optical sensor comprises a predetermined number of pixels, the predetermined number of pixels being at least 20 times the number of separate reaction sites. The emission optical system comprises a system working distance from the sample holder, wherein the working distance is less than or equal to 60 millimeters.
Abstract:
An instrument for processing and/or measuring a biological process contains an excitation source, a sample holder, an optical sensor, an excitation optical system, and an emission optical system. The sample holder is configured to receive a plurality of biological samples. The optical sensor is configured to receive an emission from the biological samples. The excitation optical system is disposed along an excitation optical path and is configured to direct the electromagnetic radiation from the excitation source to the biological samples. The emission optical system is disposed along an emission optical path and is configured to direct electromagnetic emissions from the biological samples to the optical sensor. The instrument further contains a plurality of filter assemblies configured to be interchangeably located along at least one of the optical paths. The plurality of filter components includes a first filter assembly characterized by a first optical power and a first filter having a first filter function, the first filter function characterized by at least one of a first low-pass wavelength or a first high-pass wavelength. The second filter assembly is characterized by a second optical power and a second filter having a second filter function, the second filter function comprising at least one of a second low-pass wavelength that is different than the first low-pass wavelength or a second high-pass wavelength that is different than the first high-pass wavelength.
Abstract:
A system for conducting a capillary electrophoresis assay includes a light source, an interface, and an illumination optical system. The light source is configured to provide a source beam of electromagnetic radiation. The interface is configured to receive a plurality of capillaries containing one or more target molecules or sequence of molecules. The illumination optical system is configured in use to produce a plurality of output beams from the source beam and to direct each of the output beams to corresponding capillary of the plurality of capillaries.