Abstract:
A device for generation of x-ray radiation has one or more cold electron sources as a cathode and at least one x-ray target as an anode that are arranged in an evacuable housing. Upon application of an electrical voltage between cathode and anode, electrons emitted from the electron source are accelerated in an electron beam onto the x-ray target. A device for reduction of the proportion of positive ions in the region of the electron source is arranged between the electron source and the x-ray target in the housing. The device exhibits a long lifespan with good focusing capability and fast modulation capability of the electron beam.
Abstract:
A device for generation of x-ray radiation has one or more cold electron sources as a cathode and at least one x-ray target as an anode that are arranged in an evacuable housing. Upon application of an electrical voltage between cathode and anode, electrons emitted from the electron source are accelerated in an electron beam onto the x-ray target. A device for reduction of the proportion of positive ions in the region of the electron source is arranged between the electron source and the x-ray target in the housing. The device exhibits a long lifespan with good focusing capability and fast modulation capability of the electron beam.
Abstract:
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for signaling training sequence set information to a remote station, comprising receiving signaling from a remote station indicating if a new set of training sequences is supported, and using a channel description to signal the training sequence set to be used by the remote station for a communication channel being established. Other aspects, embodiments, and features are also claimed and described.
Abstract:
The process of the present application facilitates the production of electric energy by the deliberate extraction of electrons from atoms and molecules of a gas, vapor, liquid, particulate solid, or any other form of matter that can be passed along the surface or through the electron extraction unit. The extracted electrons are captured, collected and controlled or regulated for distribution as electric energy. It is an energy efficient process for the extraction and capture of electrons for the production of electric energy with positive atomic or molecular ions as byproducts. The product ions can then be confined in a coherent beam or restricted to a magnetic enclosure or by other confinement methods, expelled to the atmosphere, another environment or to ground, or modified into useful molecules. These results are accomplished by the forcible extraction and capture of electrons from the object particles by electrically charged particles in a strong electric field. It is an extremely efficient process, in that, once the primary components are sufficiently charged, thereafter it requires only an occasional replenishment of energy to sustain operation.
Abstract:
The present invention provides a method for extracting a charged particle beam from a charged particle source. A set of electrodes is provided at the output of the source. The potentials applied to the electrodes produce a low-emittance growth beam with substantially zero electric field at the output of the electrodes.
Abstract:
A method and device for providing power to a load are disclosed. A beam of free electrons is directed from a free-electron source, such as an electron gun, into an enclosing conductive surface. The free-electron source includes a cathode, which is maintained at a negative voltage with respect to the enclosing conductive surface. A region around the free-electron source is maintained in a vacuum. The system is configured to switch over a time period between two configurations. In the first configuration, the enclosing conductive surface is isolated from a ground. In the second configuration, the enclosing conductive surface is in electrical communication with the ground. Capacitive energy is discharged from the enclosing conductive surface when in the second configuration with an electrical circuit arrangement and provided to the load.
Abstract:
The present invention provides a method and apparatus useful for providing a voltage gain as well as for generating energy. The anomalous lack of repulsion observed between unbound electrons is exploited by the apparatus, which comprises an electron gun and a capacitor which is charged by free electrons and is discharged by a circuit. The preferred embodiment additionally comprises a magnetic bottle which is activatable.
Abstract:
Disclosed are high electrical charge density entities, generated in electrical discharge production. Apparatus for isolating the high charge density entities, selecting them and manipulating them by various guide techniques are disclosed. Utilizing such apparatus, the paths followed by the entities may be switched, or selectively varied in length, for example, whereby the entities may be extensively manipulated. Additional devices are disclosed for the manipulation and exploitation of these entities, including their use with a camera and also in an oscilloscope.
Abstract:
A method and device for providing power to a load (11) are disclosed. A beam of free electrons is directed from a free-electron source, such as an electron gun (4, 15), into an enclosing conductive surface (2, 12). The free-electron source includes a cathode, which is maintained at a negative voltage with respect to the enclosing conductive surface. A region around the free-electron source is maintained in a vacuum (14). The system is configured to switch over a time period between two configurations. In the first configuration, the enclosing conductive surface (2, 12) is isolated from a ground (17). In the second configuration, the enclosing conductive surface (2, 12) is in electrical communication with the ground (17). Capacitive energy is discharged from the enclosing conductive surface (2, 12) when in the second configuration with an electrical circuit arrangement (8-10) and provided to the load (11).