Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
Abstract:
A method for fabricating a semiconductor module includes: bonding a semiconductor substrate onto a first insulating resin layer; dicing the semiconductor substrate into a plurality of individual semiconductor devices; widening the spacings between the adjacent semiconductor devices by expanding the first insulating resin layer in a biaxially stretched manner; fixing the plurality of semiconductor devices to a flat sheet, with a second insulating resin layer held between the plurality of semiconductor devices and the flat sheet, and removing the first insulating resin layer; stacking the plurality of semiconductor devices, a third insulating resin layer, and a metallic plate, in this order, so as to form a laminated body having electrodes by which to electrically connect the device electrodes to the metallic plate; forming a wiring layer by selectively removing the metallic plate and forming a plurality of semiconductor modules; and separating the semiconductor modules into individual units.
Abstract:
The present disclosure provides a fan-out chip packaging structure and a method to fabricate the fan-out chip package. The fan-out chip packaging structure includes a first redistribution layer, a second redistribution layer, metal connecting posts, a semiconductor chip, a first packaging layer, a stacked chip package, a passive element, a filling layer, a metal bumps, and a second packaging layer. By means of the present disclosure, various chips having different functions can be integrated into one package structure, thereby improving the integration level of the fan-out packaging structure. By means of the first redistribution layer, the second redistribution layer, and the metal connecting posts, a three-dimensional vertically stacked package is achieved. In this way, the integration level of the packaging structure can be effectively improved, and the conduction path can be effectively shortened, thereby reducing power consumption, increasing the transmission speed, and increasing the data processing capacity.
Abstract:
A process for manufacturing semiconductor packages is provided, that includes drilling blind apertures in a reconstituted wafer, adhering a dry film resist on the wafer over the apertures, and patterning the film to expose a space around each of the apertures. The apertures and spaces are then filled with conductive paste by wiping a quantity of the paste across a surface of the film so that paste is forced into the spaces and apertures. The spaces around the apertures define contact pads whose thickness is constrained by the thickness of the film, preferably to about 10 μm or less. To prevent paste from trapping air pockets in the apertures, the wiping process can be performed in a chamber from which much or all of the air has been evacuated. After curing the paste, the wafer is thinned from the back to expose the cured paste in the apertures.
Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
Abstract:
A process for manufacturing semiconductor packages is provided, that includes drilling blind apertures in a reconstituted wafer, adhering a dry film resist on the wafer over the apertures, and patterning the film to expose a space around each of the apertures. The apertures and spaces are then filled with conductive paste by wiping a quantity of the paste across a surface of the film so that paste is forced into the spaces and apertures. The spaces around the apertures define contact pads whose thickness is constrained by the thickness of the film, preferably to about 10 μm or less. To prevent paste from trapping air pockets in the apertures, the wiping process can be performed in a chamber from which much or all of the air has been evacuated. After curing the paste, the wafer is thinned from the back to expose the cured paste in the apertures.
Abstract:
A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
Abstract:
An electronic package having a base structure; a layer stack formed over the base structure; and a component embedded at least partially within the base structure and/or within the layer stack. The layer stack has a decoupling layer structure, the decoupling layer structure with a decoupling material having a Young Modulus being smaller than 1 GPa.
Abstract:
A semiconductor package including a core substrate, a semiconductor chip in the core substrate and having chip pads, a redistribution wiring layer covering a lower surface of the core substrate and including redistribution wirings electrically connected to the chip pads and a pair of capacitor pads exposed from an outer surface of the redistribution wiring layer, conductive pastes on the capacitor pads, respectively, and a capacitor via the conductive pastes and having first and second outer electrodes on the capacitor pads, respectively, may be provided. Each of the capacitor pads includes a pad pattern exposed from the outer surface of the redistribution wiring layer, and at least one via pattern at a lower portion of the pad pattern and electrically connected to at least one of the redistribution wirings. The via pattern is eccentric by a distance from a center line of the pad pattern.
Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.