Abstract:
An electron microscope 10 is adapted to enable spectroscopic analysis of a sample 16. A parabolic mirror 18 has a central aperture 20 through which the electron beam can pass. The mirror 18 focuses laser illumination from a transverse optical path 24 onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system 30. The mirror 18 is retractable (within the vacuum of the electron microscope) by a sliding arm assembly 22.
Abstract:
Methods for preparing colloidal metal nanoparticles, in which seed colloids are added to a solution of reductant mixed with a solution containing a source of metal ions, include a method in which the seeds are colloidal gold nanoparticles, the source of gold ions is HAuCl4, and the reductant is NH2OH. SERS substrates are prepared by combining a colloidal gold monolayer with a solution containing a source of metal ions and a reductant such as NH2OH.
Abstract:
A molecular sensor comprising a sensor film containing a metal compound wherein Raman spectroscopic analysis is carried out utilizing the amplification of Raman light by the localized plasmons that fine particles resulting from reduction of the metal compound generate has a small size and a very high sensitivity. A high sensitivity Raman spectroscopic process is provided.
Abstract:
The present invention relates to a method and apparatus for detecting transitions between different gas or liquid products in a flow path and, more particularly, it relates to an apparatus and method utilizing Raman spectroscopy for detecting transitions between petroleum products. A Raman spectrometer is preferably to produce a monochromatic excitation beam at a wavelength of approximately 670 nm. The spectrometer consists of an entrance slit, a combined diffraction grating/focussing element, and an exit slit. The Raman signal, which exits the spectrometer exit slit is detected by a highly sensitive photomultiplier tube, and sent to a computer device for data acquisition and analysis. The proposed invention detects liquid or gas products in a flow path by detecting the changes in the composition of various petroleum products flowing through a gasoline pipeline, by means of exposing samples of various petroleum products to the Raman spectrometer system.
Abstract:
An optical sensing enhancing material (and corresponding method of making) comprising: a medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals; and a microcavity, wherein the medium is located in a vicinity of the microcavity. Also an optical sensor and sensing method comprising: providing a doped medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals, with the material; locating the doped medium in the vicinity of a microcavity; exciting the doped medium with a light source; and detecting light reflected from the doped medium.
Abstract:
For identifying black plastics effectively and rapidly, it is desirable to maintain full laser power while reducing the power density. This is achieved by the incorporation of a moving lens that disperses the 0.5mm laser spot over a larger area typically of about 5mm in diameter. The entire signal from the larger (5mm) diameter is collected at the same spot in the fiber bundle leading to a Raman or other spectral analyzer. There are no other modifications required for the rest of the system as the moving lens does not affect the collection efficiency of the characteristic signal from the sample.
Abstract:
Systems and methods are described that allow the high-throughput preparation, processing, and study of arrays of samples, each of which comprises at least one compound. Particular embodiments of the invention allow a large number of experiments to be performed in parallel on samples that comprised of one or more compounds on the milligram or microgram quantities of compounds. Other embodiments of the invention encompass methods and devices for the rapid screening of the results of such experiments, as well as methods and devices for rapidly determining whether or not similarities exist among groups of samples in an array. Particular embodiments of the invention encompass methods and devices for the high-throughput preparation of different forms of compounds (e.g., different crystalline forms), for the discovery of new forms of old compounds, and for the discovery of new methods of producing such forms. Embodiments of the invention also allow for the high-throughput determination of how specific compounds or forms of compounds behave when exposed to other chemicals or environmental conditions.
Abstract:
An apparatus for verifying the identity of a dispensed pharmaceutical comprises an analysis unit adapted to determine a property of the dispensed pharmaceutical, an input device adapted to receive predetermined identifying information corresponding to the dispensed pharmaceutical, and a comparison unit adapted to compare the determined property of the dispensed pharmaceutical with the predetermined identifying information. In addition, a method of verifying a prescription, wherein the prescription comprises a pharmaceutical compound, comprises associating the prescription with a unique identifier, storing the unique identifier, determining the identity of the pharmaceutical compound, and comparing the identity of the pharmaceutical compound with the unique identifier.
Abstract:
Raman spectroscopy probe assemblies are disclosed for use with portable and/or handheld analyzers. The probes are also adaptable to sample liquids, and/or powders, tablets and/or other solids and are capable of withstanding harsh environmental conditions. The probes include an optical head assembly, associated optical fibers and replaceable sampling tubes. Safety shut-off mechanisms are provided to reduce the risk of inadvertent exposure to radiation. In one embodiment, the shut-off switch is a spring-biased shutter that is opened by a solenoid only under predefined proper operating conditions. In another aspect of the invention, a simple orthogonal optical head assembly is disclosed that does not require collinear optical paths. The orthogonal arrangement of input and captured light paths also reduces the need for precise alignment of the optical components. The orthogonal optical head assemblies of the present invention are well suited to accommodate the shutoff mechanisms of the present invention. The open architecture of the orthogonal assembly also facilitates the placement of lenses and/or filters within the head assembly, and also accommodates other elements, such as energy absorbing chambers, within the head assembly. In another aspect of the invention, sampling tubes, and replaceable end caps for such tubes, are disclosed that facilitate hand measurements of substances.
Abstract:
An optical sensing enhancing material (and corresponding method of making) comprising: a medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals; and a microcavity, wherein the medium is located in a vicinity of the microcavity. Also an optical sensor and sensing method comprising: providing a doped medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals, with the material; locating the doped medium in the vicinity of a microcavity; exciting the doped medium with a light source; and detecting light reflected from the doped medium. Also an optical sensing enhancing material comprising a medium, the medium comprising a semicontinuous metal film of randomly distributed metal particles and their clusters at approximately their percolation threshold. The medium preferably additionally comprises a microcavity/microresonator. Also devices and methods employing such material.