Abstract:
The present invention relates to a method for regulating gene expression, comprising introducing into a cell each of a recombinant vector which expresses a first domain comprising N-terminus of a Cas9 protein, and a recombinant vector which expresses a second domain comprising C-terminus of a Cas9 protein, a composition comprising the recombinant vectors, a kit for regulating gene expression, and a method for intracellular production of Cas9 protein. Moreover, the present invention relates to a transformed cell introduced with a viral vector which packages the first domain, and a viral vector which packages the second domain, and to a composition comprising a virus produced therefrom.
Abstract:
The present disclosure relates to a method for detecting off-target sites of a programmable nuclease in a genome, and specifically, to a method for detecting off-target sites through data analysis by subjecting the genome isolated in vitro to programmable nucleases to cleave the genome and then performing whole genome sequencing or deep sequencing, and to a method for selecting on-target sites of a programmable nuclease, which minimizes the off-target effect, using this method. The Digenome-seq of the present disclosure can detect the off-target sites of a programmable nuclease on the genomic scale at a high degree of reproducibility, and thus can be used in the manufacture of programmable nucleases having high target specificity and the study thereof.
Abstract:
The present invention relates to a method for producing immune-compatible cells or a cell population which comprises a step of editing one or two alleles of one or more immune-compatible antigen genes by gene deletion or modification in an isolated cell comprising at least one of the immune-compatible antigen genes selected from HLA (human leukocyte antigen)-A, HLA-B and HLA-DR, to immune-compatible cells produced by the method, and to a cell population comprising the immune-compatible cells produced by the method
Abstract:
The present disclosure relates to a novel regulatory element for enhancing RNA stability or mRNA translation; ZCCHC2 interacting with the regulatory element; and uses thereof. Being capable of increasing the expression of a target protein, the novel regulatory element for enhancing RNA stability or mRNA translation; and ZCCHC2 interacting with regulatory element according to the present disclosure are applicable in various fields, depending on the uses of the target protein.
Abstract:
The present invention relates to a composition for base editing of plant cell organelle DNA and, in particular, to a composition and editing method for adenine-to-guanine editing of plant cell organelle DNA.
Abstract:
The present invention relates to a nano-vesicle reactor and a method for producing the same. Specifically, the present invention provides a composition for producing a nano-vesicle reactor, characterized by comprising a first vesicle containing a first receptor on its surface and a second vesicle containing a second receptor on its surface, wherein the first receptor and the second receptor are bound with each other through a ligand system so that the first vesicle and the second vesicle are fused to form the nano-vesicle reactor ; and a method for producing the above nano-vesicle reactor. The nano-vesicle reactor of the present invention can be utilized in production of energy inside a cell through cellular enzymatic reaction, a drug delivered system, and a diagnostic system.
Abstract:
The present invention relates to an antiviral composition for Betacoronavirus comprising rhein and meclofenamic acid as active components. When the antiviral composition of the present invention is used, an antiviral effect is demonstrated whereby the viral RNA level of SARS-CoV-2 and HCoV-OC43 is suppressed, and thus it is possible to treat or prevent COVID-19 or a cold.
Abstract:
The present invention relates to an RNA interactome capturing protocol and an antiviral composition discovered using same. When used, the antiviral composition and pharmaceutical composition of the present invention can effectively inhibit viral infection and suppress viral proliferation in vivo after viral infection.
Abstract:
The present invention relates to a pharmaceutical composition for preventing or treating cancer, comprising a TUT4/7 expression modulator, wherein the pharmaceutical composition of the present invention can prevent cell division and hinder cancer development by inhibiting the function of TUT4/7, and can increase the amount of miR-324-5p and suppress the function of miR-324-3p.1, and therefore can be effectively used for prevention, treatment, or diagnosis of cancer.
Abstract:
The present invention relates to an antibody against Tie-2 or an antigen binding fragment thereof, a nucleic acid for coding same, a vector comprising said nucleic acid, a cell transformed with said vector, a method for producing said antibody or the antigen binding fragment thereof, and a composition for preventing or treating angiogenic diseases, comprising said antibody or the antigen binding fragment thereof.