Abstract:
A fixed wing flight vehicle has wing, a center-mounted propulsion unit and a pod that is moveable between a center of the wing and a displaced position at or near one end of the wing. When the pod is at or near the center of the wing, that is, having a center of mass at or near a thrust vector of the propulsion unit, the flight vehicle flies with the characteristics of a regular fixed wing aircraft. However, when the pod is translated to the position at or near an end of the wing, an overall center of mass of the flight vehicle is substantially offset from the thrust vector of the propulsion unit. This causes the flight vehicle to spin like a samara, e.g., a maple seed, so that the flight vehicle can take off or land in a very limited space, much like a helicopter.
Abstract:
An aerial vehicle having a low radar signature includes a first side on which turbine openings, and payload bays or landing gear bays are disposed. A second side of the aerial vehicle is designed to have a smaller radar signature than the first side.
Abstract:
A flight-operable, truly modular aircraft has an aircraft core to which one or more of outer wings members, fuselage, cockpit, leading and trailing edge couplings, and empennage and tail sections can be removably coupled and/or replaced during the operating life span of the aircraft. In preferred embodiments the aircraft core houses the propulsive engines, avionics, at least 80% of the fuel, and all of the landing gear. The aircraft core is preferably constructed with curved forward and aft composite spars, that transfer loads across the center section, while accommodating a mid-wing configuration. The aircraft core preferably has a large central cavity dimensioned to interchangeably carry an ordnance launcher, a surveillance payload, electronic countermeasures, and other types of cargo. Contemplated aircraft can be quite large, for example having a wing span of at least 80 ft.
Abstract:
A vehicle-based airborne wind turbine system having an aerial wing, a plurality of rotors each having a plurality of rotatable blades positioned on the aerial wing, an electrically conductive tether secured to the aerial wing and secured to a ground station positioned on a vehicle, wherein the aerial wing is adapted to receive electrical power from the vehicle that is delivered to the aerial wing through the electrically conductive tether; wherein the aerial wing is adapted to operate in a flying mode to harness wind energy to provide a first pulling force through the tether to pull the vehicle; and wherein the aerial wing is also adapted to operate in a powered flying mode wherein the rotors may be powered so that the turbine blades serve as thrust-generating propellers to provide a second pulling force through the tether to pull the vehicle
Abstract:
A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.
Abstract:
An aircraft having a vertical take-off and landing (“VTOL”) propulsion system aircraft, smaller than a standard manned aircraft and remotely or autonomously piloted. The aircraft comprises a symmetrical airfoil shape for the center body section that consists of ribs and spars maintaining an open area in the center. Situated within the open area of the center of the aircraft resides a duct system consisting of a ducted fan and five outlet vents. The main outlet vent functions as the exhaust exiting the aft portion of the aircraft, with the remaining four ducts used for the VTOL capabilities exiting the underside of the aircraft. The aircraft can have a range of wingspan, which can be scaled to satisfy needs and requirements, with a blended wing body that incorporates the inlet and duct system.
Abstract:
An unmanned air vehicle includes a body having front and rear sections with at least one pair of end plates connected to the body, wherein one end plate within the at least one pair of end plates is connected to the left side of the body and another end plate within the at least one pair of end plates is connected to the right side of the body, each end plate having upper and lower sections, wherein: a) the upper section is positioned above a mean line of the body; b) the lower section is positioned below the mean line of the body; and c) a ratio of the area of the upper section to the area of the lower section is less than 1.
Abstract:
A single wing for an unmanned aircraft adapted for image acquisition, surveillance or other applications consists of a ribbed frame and a foam wherein the ribbed frame is integrated during molding for stiffness and strength. The foam has a container for holding the electric and/or electronic components. The foam constitutes the outer layer of the unmanned aircraft at impact side. The wing can be produced at low cost and low complexity in large volumes, increases the impact resistance and safety when used in civil areas, and is removable and disposable thereby enabling reuse of the electric and/or electronic components.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
A single wing for an unmanned aircraft adapted for image acquisition, surveillance or other applications consists of a ribbed frame and a foam wherein the ribbed frame is integrated during molding for stiffness and strength. The foam has a container for holding the electric and/or electronic components. The foam constitutes the outer layer of the unmanned aircraft at impact side. The wing can be produced at low cost and low complexity in large volumes, increases the impact resistance and safety when used in civil areas, and is removable and disposable thereby enabling reuse of the electric and/or electronic components.