Abstract:
A cleaning robot including a main body, a pad mounted below the main body to implement cleaning, and a drive assembly to apply drive power to the pad. The drive assembly moves the main body to a target position by adjusting the drive power. The cleaning robot may move at a high speed owing to omni-directional movement thereof without rotation of the main body. Further, the cleaning robot may imitate a human wiping pattern, thus achieving enhanced cleaning efficiency. Furthermore, various cleaning patterns including a straight pattern and a curvilinear pattern may be applied to the cleaning robot.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
A cleaning robot includes a non-circular main body, a moving assembly mounted on a bottom surface of the main body to perform forward movement, backward movement and rotation of the main body, a cleaning tool assembly mounted on the bottom surface of the main body to clean a floor, a detector to detect an obstacle around the main body, and a controller to determine whether an obstacle is present in a forward direction of the main body based on a detection signal of the detector, control the rotation of the main body to determine whether the main body rotates by a predetermined angle or more upon determining that the obstacle is present in the forward direction, and determine that the main body is in a stuck state to control the backward movement of the main body if the main body rotates by the predetermined angle or less.
Abstract:
The self-propelled cleaner (1) of the present invention includes an event detecting section (101) for detecting an event which relates to cleaning and has occurred in the cleaner, a feeling selecting section (201) for selecting, from a plurality of options, an operation mode with which the cleaner carries out an operation in response to the event, in accordance with measured information which relates to the cleaning and is measured by the cleaner, and a response operation control section (301) for controlling the cleaner to carry out the operation based on the operation information which is associated with the event and the operation mode.
Abstract:
A charging device of a robot cleaner is provided. The charging device of a robot cleaner according to the embodiment includes at least one cover forming an appearance of the charging device, a base which is coupled with the cover and includes a terminal unit for charging the robot cleaner, an induction signal generating unit disposed at a side of the cover or the base to transmit a return induction signal to the robot cleaner, and an induction signal guide member disposed at a side of the induction signal generating unit to enhance a docking performance of the robot cleaner by improving linearity of the induction signal. The charging device according to the embodiment can guide the path for the return of the robot cleaner and recharge the robot cleaner stably.
Abstract:
A robotic surface treatment device includes at least two wheels, at least two electric motors, wherein one electric motor is connected to one corresponding wheel via a motor shaft, at least two treatment pads, wherein at least one treatment pad is attached to a bottom surface of a corresponding wheel, a main controller positioned on top of and in connection with drive controllers positioned on top of each electric motor, a plurality of sensors integrated in the main controller, and a rechargeable battery connected to the main controller. At least one treatment fluid tank may be positioned on the robotic surface treatment device, and at least one treatment fluid tube may extend from a bottom surface of the treatment fluid tank to a bottom surface of the robotic surface treatment device. The sensors may be laser or acoustic sensors configured to create a boundary line for a treatment area.
Abstract:
A guiding device for guiding a mobile robotic vacuum cleaner to a charging base is composed of a central sensor, a left sensor, and a right sensor. The mobile robotic vacuum cleaner is composed of a main processor and a driving system. The charging base includes an optical emitter for emitting optical signals toward a predetermined direction. The central sensor, the right sensor, and the left sensor are electrically connected with the main processor and mounted to a charging sensor set zone. In this way, the main processor can judge whether the mobile robotic device correctly moves toward the charging base according to the signals detected by the sensors and then adjustably control the moving direction of the mobile robotic vacuum cleaner via the driving system to guide the mobile robotic vacuum cleaner to accurately move toward the charging base.
Abstract:
A battery charger having a charging side at the body thereof for receiving and charging a mobile robotic vacuum cleaner is disclosed. The charging side has a groove, a sound wave transmitter mounted in the groove and a baffle mounted in the groove in front side of the sound wave transmitter for reflecting the sound wave transmitted by the ultrasonic transmitter toward two opposite lateral sides of the charging side along the groove to form two opposing sound wave beams to form two opposing sound wave beams for receiving by a sound wave receiver of the mobile robotic vacuum cleaner for determination of the steering direction. Subject to the guide of the sound wave beams, the mobile robotic vacuum cleaner is accurately guided to the battery charger and will not pass over or impact the battery charger.
Abstract:
The present invention refers to a robot, a docking system and a docking method therefor. The docking system comprises a first circuit located in a robot. The first circuit comprises a power storage unit for supplying power to the robot and a first main control unit for controlling the movement of the robot. The docking system further comprises a first group of terminals electrically connected with the first circuit, and a second circuit located in a docking station. The second circuit comprises a power supplying unit. The docking system further comprises a second group of terminals electrically connected with the second circuit. The power storage unit or the power supplying unit provides a detection power. The detection power generates a detection current when it flows across a detection circuit. The detection circuit is constructed by the first circuit and the second circuit through the first group of terminals docking with the second group of terminals. The detection circuit further comprises a current detection unit, and the first main control unit confirms that the first group of terminals dock with the second group of terminals when the detection current is detected by the current detection unit. The robot according to this invention can reliably dock to the docking station without human intervention, which brings extreme convenience to production and life.
Abstract:
Disclosed are a robot cleaner and a self testing method thereof. The robot cleaner performs a self test when being initially operated or when required by a user. This may prevent malfunctions or breakdowns of the robot cleaner. Furthermore, the robot cleaner senses states of components and sensors mounted therein, and performs a self test based on characteristics, output values, etc. of the components and the sensors. This may prevent accidents or errors which may occur as the robot cleaner operates.