Abstract:
A fluorescence detection system comprises a light source configured to produce an excitation light, an optical lens and a fiber bundle. The optical lens is configured to focus the excitation light to a sample to emit fluorescence and to collect the fluorescence. The fiber bundle probe comprises a transmitting fiber configured to transmit the excitation light to the optical lens, and a first receiving fiber configured to deliver the collected fluorescence. The fluorescence detection system further comprises a first detector configured to detect the fluorescence delivered by the receiving fiber to generate a response signal, and a processing unit configured to determine information about the samples by analyzing the response signal. Additionally, a fluorescence detection method is also presented.
Abstract:
Method and apparatus for detecting, by absorption spectroscopy, an isotopic ratio of a sample, by passing first and second laser beams of different frequencies through the sample. Two IR absorption cells are used, a first containing a reference gas of known isotopic ratio and the second containing a sample of unknown isotopic ratio. An interlacer or reflective chopper may be used so that as the laser frequencies are scanned the absorption of the sample cell and the reference cell are detected alternately. This ensures that the apparatus is continuously calibrated and rejects the baseline noise when phase sensitive detection is used.
Abstract:
The present invention provides a spectral filter for an optical sensor. The spectral filter includes a substrate having a focus region and a defocus region, a panchromatic filter region disposed on the focus region of the substrate and a multi-spectral filter region disposed on the defocus region of the substrate. The panchromatic filter region includes a plurality of panchromatic pixels, while the multi-spectral filter region includes a plurality of multi-spectral pixels. Each of the multi-spectral pixels includes a plurality of color pixels.
Abstract:
The present invention provides a spectral filter for an optical sensor. The spectral filter includes a substrate having a focus region and a defocus region, a panchromatic filter region disposed on the focus region of the substrate and a multi-spectral filter region disposed on the defocus region of the substrate. The panchromatic filter region includes a plurality of panchromatic pixels, while the multi-spectral filter region includes a plurality of multi-spectral pixels. Each of the multi-spectral pixels includes a plurality of color pixels.
Abstract:
Eine Spektrometer-Anordnung (10) mit einem Spektrometer (14) zur Erzeugung eines Spektrums eines ersten Wellenlängenbereichs von Strahlung aus einer Strahlungsquelle auf einem Detektor (42), enthält ein Echelle-Gitter (36) zur spektralen Zerlegung der in die Spektrometer-Anordnung (10) eintretenden Strahlung in einer Hauptdispersionsrichtung (46), ein dispergierendes Element (34) zur Ordnungstrennung mittels spektraler Zerlegung der Strahlung in einer Querdispersionsrichtung (48), welche einen Winkel mit der Hauptdispersionsrichtung des Echelle-Gitters (36) bildet, so daß ein zweidimensionales Spektrum (50) mit einer Mehrzahl von getrennten Ordnungen (52) erzeugbar ist, eine abbildende Optik (24, 38) zur Abbildung der durch einen Eintrittsspalt (20) in die Spektrometer-Anordnung (10) eintretenden Strahlung in eine Bildebene (40) und einen Flächendetektor (42) mit einer zweidimensionale Anordnung einer Vielzahl von Detektorelementen in der Bildebene (40). Die Anordnung ist dadurch gekennzeichnet, daß ein weiteres Spektrometer (12) mit wenigstens einem weiteren dispergierenden Element (64) und einer weiteren abbildenden Optik (60, 66) vorgesehen ist zur Erzeugung eines Spektrums (68) eines von dem ersten Wellenlängenbereich unterschiedlichen zweiten Wellenlängenbereichs von Strahlung aus einer Strahlungsquelle auf demselben Detektor (42). Die Spektren können flächenmäßig oder zeitlich auf dem Detektor getrennt werden.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
A system for predicting blood constituent values in a patient includes a remote wireless noninvasive spectral device, the remote wireless non-invasive spectral device generating a spectral scan of a body part of the patient. Also included are a remote invasive device and a central processing device. The remote invasive device generates a constituent value for the patient, while the central processing device predicts a blood constituent value for the patient based upon the spectral scan and the constituent value.
Abstract:
A wavelength division multiplexed device is based on, a transmission grating spectrometer having at least two diffractive optical elements (214, 216). The WDM device provides flexible use and may be widely applied in WDM systems. The device is useful for multiplexing and demultiplexing, channel monitoring, for adding and dropping channels, and for controlling the power in individual channels within a multiple channel signal. The device provides for dynamic control of individual channels, and may be advantageous in use as a gain flattening filter.
Abstract:
The present invention relates to a device for detecting the properties of a web of material transported in the longitudinal direction such as a paper web (20). The device includes a plurality of optical fibres (28) having their input areas (30) each located in the vicinity of the surface of the material web and aligned on said surface, the fibres being secured on a crossbar (26) extending across the material web. The device also includes an infrared spectrometer having the output areas (34) of the optical fibres (28) connected to its input (36) while infrared sensors are connected to the output (44) of said infrared spectrometer. The infrared spectrometer includes a holographic grating (40) for arranging the optical fibers (28) side by side and in one line at the spectrometer input (36) so that the infrared spectra of the signals emitted by the individual optical fibres (28) appear side by side in one line at the spectrometer output (44), and so that the infrared sensors at said output (44) are made in the form of a sensor matrix (46) comprising n lines and m rows of individual infrared-sensitive sensors (48), wherein the spectra from up to m optical fibres (28) can be distributed and detected into up to n spectral areas.
Abstract:
A micro-Raman device includes a first laser light source, a second laser light source, a first holder, a second holder, a first ND filter, and a second ND filter. The first laser light source and the second laser light source generate first laser light of a first wavelength and second laser light of a second wavelength, respectively. The second wavelength is different from the first wavelength. The first laser light and the second laser light proceed in a second direction orthogonal to a first direction while being separated from each other in the first direction. The first holder and the second holder are arranged overlapping each other in the second direction.