Abstract:
An arrangement for optical measurement of at least one process variable in a medium, comprising: at least one light source; at least one light receiver; an optical sensor element at least one data processing unit; and a light conductor. The light conductor connects the light source with the optical sensor element and the optical sensor element with the light receiver. The light conductor is embodied with at least three arms, wherein the first arm is arranged at the light source, the second arm is arranged at the light receiver and the third arm is arranged at the optical sensor element first arm and the second arm combine to form the third arm. The invention relates further to a measuring device comprising an above described arrangement.
Abstract:
The present disclosure provides systems and methods for performing multi-photon imaging using a fiber laser. Systems and methods herein may be used for performing imaging using multi-photon excitation (e.g., using two-photon excitation or multi-color two-photon excited fluorescence). Aspects of the disclosure are applicable to a variety of multi-photon methods without being limited to CRS or multi-photon fluorescence excitation. A multi-wavelength fiber laser system and its use in multi-photon methods are provided.
Abstract:
An analytical instrument may have multiple distinct channels. Such may include one or more illumination sources and sensors. Illumination may be delivered to specific locations of a specimen holder, and returned illumination may be delivered to specific locations of a sensor array. Illumination may first pass a specimen, and a mirror or reflector may then return the illumination past the specimen. Optical splitters may be employed to couple pairs of fiber optics proximate a specimen holder. Such channels may further include a plurality of illumination sources positioned on one side of a specimen holder and a plurality of sensors on the other side. The plurality of sensor may capture image of a specimen and a spectrophotometer may concurrently scan the specimen. A plurality of specimens may be imaged and scanned in a single pass of a plurality of passes. Spherical or ball lenses may be placed in an optical path of the illumination to achieve a desired illumination pattern.
Abstract:
A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
Abstract:
A method and apparatus for dating a body sample, such as blood, includes taking at least one spectroscopic measurement of the sample at at least two predetermined positions in the spectrum having spectral characteristics corresponding to at least two predetermined substances present in the sample that have a time varying relationship with each other. A measured relative concentration of each of the predetermined substances is then determined from the measurement, and the measured relative concentrations of the two predetermined substances is compared with a known variation of the relative concentrations of the two predetermined substances over time. A good fit of the measured relative concentrations to the known variation of the relative concentrations is then determined, so as to provide an indication of the age of the sample. Alternatively, instead of measuring the relative concentrations of each of the predetermined substances, the rate of change of the relative concentrations is determined.
Abstract:
An image processing apparatus includes: an image acquiring unit configured to acquire image information representing an image acquired by irradiating a gland duct with excitation light and observing fluorescence generated in the gland duct; a fluorescence intensity computation unit configured to compute a value corresponding to intensity of the fluorescence as fluorescence intensity based on the image information; and an image determination unit configured to determine whether or not an endocrine cell exists in the gland duct based on the fluorescence intensity computed by the fluorescence intensity computation unit, and to determine abnormality of the gland duct based on a determination result of the endocrine cell.
Abstract:
The embodiments herein relate to a system (100) for analyzing a fluid (103). The system (100) comprises a light source (110) configured to emit light for transmission through a first optical transmission means (107a) to a measurement device (105). The measurement device (105) comprises at least a part of the fluid (103) and is configured to be illuminated by the emitted light. The system comprises a second optical transmission means (107b) configured to transmit shadowed or reflected light from the fluid (103) when the measurement device (105) is illuminated to an image capturing device. The image capturing device (113) is configured to capture an image of the fluid (103) in the measurement device (105) based on the transmitted information about the fluid (103). The light source (110) and the one or more image capturing device (113) are remotely arranged from the at least one measurement device (105).
Abstract:
An arrangement for optical measurement of at least one process variable in a medium, comprising: at least one light source; at least one light receiver; an optical sensor element at least one data processing unit; and a light conductor. The light conductor connects the light source with the optical sensor element and the optical sensor element with the light receiver. The light conductor is embodied with at least three arms, wherein the first arm is arranged at the light source, the second arm is arranged at the light receiver and the third arm is arranged at the optical sensor element first arm and the second arm combine to form the third arm. The invention relates further to a measuring device comprising an above described arrangement.
Abstract:
An analyzer apparatus and method of use thereof is described to dynamically irradiate a sample with incident light where the incident light is varied in time in terms of any of: position, radial position relative to a point of the skin of a subject, solid angle, incident angle, depth of focus, energy, and/or intensity. For example, the incident light is varied in radial position as a function of time relative to one or more of a sample site, a point on skin of the subject, a detection optic, and/or a sample volume observed by a detection system. The radially varied incident light is used to enhance and/or vary light probing the epidermis, the dermis, and/or the subcutaneous fat of the subject or of a group of subjects.
Abstract:
The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 1017/cm3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10−1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In2O3, Nb-doped TiO2, and F-doped SnO2.