Abstract:
The present disclosure endeavors to provide systems, methods and apparatus for ensuring aircraft compliance with governmental guidelines, such as, for example, MRCR Category II compliance. A hardware-based system may be employed to reduce range and/or payload below predetermined ranges and a payload capacities. Also provided herein are hardware-based systems, methods, and apparatus for restricting a system's range to predetermined range and/or the payload to a predetermined limit using, for example, a Application-Specific Integrated Circuit (ASIC) installed in the flight control system.
Abstract:
A modular vehicle management system is described, comprising a controller module configured to control different types of carrier modules. The controller module includes a computer system and optionally one or more sensors. The computer system is configured to perform operations comprising detecting whether a carrier module is connected to the controller module. If the carrier module is connected to the controller module, the carrier module is authenticated. If the authentication fails, operation of the vehicle is inhibited. The control module is configured to determine carrier module capabilities including information regarding a navigation processing device, and/or a radio modem. The controller adapts to the capabilities of the controller module. Using information from the sensors and the navigation processing device, the vehicle management system navigates the vehicle.
Abstract:
The invention provides a system, method and landing device for landing an aircraft (50) with respect to a predetermined landing location (P). The aircraft is configured for powered flight at least when the parafoil (60) is deployed, and includes an automatic landing system for controllably executing a landing approach maneuver for the aircraft while in free powered flight with the parafoil deployed to enable the aircraft to be brought into overlying proximity with the landing location. A landing device in the form of an energy absorbing landing net arrangement (20) is provided at the landing location for enabling the aircraft to be landed thereon at least partially vertically when in overlying proximity, and for dampening the landing impact of the aircraft.
Abstract:
An air-launched aircraft (10) includes deployable wings (16, 18), elevons (20, 22), and vertical fins (26, 28) that deploy from a fuselage (12) during flight. The aircraft may include a control system for operating the elevons, a communication system, and batteries for powering the systems. In addition, the aircraft may include a payload module (14) that mates with an interface in the fuselage. The payload module may include any of a variety of payloads, including cameras, sensors, and/or radar emitters. The aircraft may be powered or unpowered, and may be very small, for example, less than on the order of 10 kg (22 pounds). The deployable surfaces of the aircraft may be configured to deploy in a pre-determined order, allowing the aircraft automatically to enter controlled flight after being launched in a tumbling mode.
Abstract:
A centering system for positioning an Unmanned Autonomous Vehicle (UAV) is provided with two or more supporting extremities rigidly connected thereto, comprising a pair of displaceable positioning elements provided with surfaces sloped relative to each other, which create trapping areas such that when said positioning elements are caused to move one relative to the other, said two or more supporting extremities are caused to be trapped in said trapping areas.
Abstract:
The present invention relates to a system for improving accuracy and safety of UAV navigation, and for generating an optimal protection level and geometry screening, and more particularly to a system that monitors an error and a failure of a GNSS navigation signal, broadcasts error correction information and integrity information to a UAV within a radius of about 20 km to allow the UAV to apply the corresponding information by a ground module, thereby improving the navigation accuracy and safety of the UAV. The ground module receives a GNSS navigation signal, calculates GNSS navigation error information, and generates correction information, and monitors a failure through a simplified failure monitoring algorithm, and the mounted module provides a system and a method for receiving a message that is broadcast by the ground module, and calculating precise and safe navigation information of an UAV by applying the message.
Abstract:
In an example, a power source for an electric propulsion system of an aerial vehicle includes a body having an electrical energy storage device configured to store electrical energy. The power source also includes a plurality of terminals coupled to the electrical energy storage device for supplying the electrical energy from the electrical energy storage device to the electric propulsion system of the aerial vehicle. The power source further includes a plurality of flight control surfaces extending outwardly from the body. The flight control surfaces are actuatable to adjust a flight attitude of the power source. Additionally, the power source includes a flight control system including a processor and configured to actuate the plurality of flight control surfaces to fly the power source to a target location when the power source is jettisoned from the aerial vehicle.
Abstract:
The flight control part 201 makes the unmanned aerial vehicle fly along a flight path in a predetermined area. The radio wave acquisition part 202 acquires radio wave information including a radio wave intensity when the radio unit of the unmanned aerial vehicle detects a short-distance radio wave of the user terminal during the flight of the unmanned aerial vehicle. The flight position acquisition part 203 acquires GPS position information of the unmanned aerial vehicle when the radio unit detected the short-distance radio wave, as a flight position of the unmanned aerial vehicle based on a GPS unit of the unmanned aerial vehicle. The terminal position calculation part 204 calculates a presence position of the user terminal in the area based on a radio wave intensity of the acquired radio wave information, and the acquired flight position of the unmanned aerial vehicle. The user attribute analysis part 205 arranges the calculated presence position of the user terminal in the map information corresponding to the area, and analyzes user attribute information of the user terminal based on place attribute information indicating a characteristic of the place where the presence position is arranged.
Abstract:
A method for controlling a drone includes receiving a request for information about a spatial location, generating data requests, configuring a flight plan and controlling one or more drones to fly over the spatial location to obtain data types based on the data requests, and extracting and analyzing data to answer the request. The method can include extracting data points from the data types, obtaining labels from a user for one or more of the data points, predicting labels for unlabeled data points from a learning algorithm using the labels obtained from the user, determining the predicted labels are true labels for the unlabeled data points and combining the extracted data, the user labeled data points and the true labeled data points to answer the request for information. The learning algorithm may be active learning using a support vector machine.
Abstract:
Various systems and methods for providing and deploying a power harvesting drone are described herein. A power harvesting drone includes a motor assembly; an energy replenishment coupler; a processor communicatively coupled to the energy replenishment coupler; and a memory storing instructions, which when executed by the processor cause the processor to: operate the power harvesting drone to navigate a predetermined path; determine that a power supply used to operate the power harvesting drone is below a threshold of remaining power; identify an opportunistic energy source; and deviate from the predetermined path to replenish at least a portion of the power supply from the opportunistic energy source using the energy replenishment coupler onboard the power harvesting drone.