Abstract:
An optical analysis system (1), which is arranged to determine amplitude of a principal component of an optical signal, includes a first detector (5) for detecting the optical signal weighted by a first spectral weighting function, and a second detector (6) for detecting the optical signal weighted by a second spectral weighting function. For an improved signal-to-noise ratio, the optical analysis system (1) further includes a dispersive element (2) for spectrally dispersing the optical signal, and a distribution element (4) for receiving the spectrally dispersed optical signal and for distributing a first part of the optical signal weighted by the first spectral weighting function to the first detector (5) and a second part of the optical signal weighted by the second spectral weighting function to the second detector (6). The optical analysis system (1) is suited for use in numerous applications including a spectroscopic analysis system (30) and a blood analysis system (40).
Abstract:
This invention describes a method for determining the content of conjugated diolefins by means of the measurement of the MAV of a sample of catalytic cracking gasoline or thermal cracking gasoline, from its NIR (near-infrared) spectrum, and the application of said method for monitoring a unit for selective hydrogenation of the cracking gasolines.
Abstract:
An optical blood analyte monitor (2) comprises a near infra-red light source and a complementary detection (6) means; a component analyser (12) having access to a chemometric model linking optical spectral features to a level of blood analyte of interest and configured to apply the model to signals received from the detection (6) means and a tilting filter arrangement (8) having a plurality of optical interference filters (20a . . . e;56a . . . d), each filter being tiltable to vary a wavelength of incident light from the source transmitted there through. The light source comprises a plurality of light emitters (4a . . . e) each being arranged to emit light along a different associated light-path (16a . . . e) in which is located an associated different one of the plurality of the interference filters (20a . . . e) and towards a same analysing region (18) at which a tissue volume (finger for example) containing a blood sample to be analysed is located in use.
Abstract translation:光学血液分析物监测器(2)包括近红外光源和互补检测(6)装置; 组件分析器(12),其访问化学计量模型,其将光谱特征与感兴趣的血液分析物的水平相关联并且被配置为将模型应用于从检测装置(6)装置接收的信号和倾斜滤波器装置(8) 多个光学干涉滤光器(20 a ... e; 56 a ... d),每个滤光片可倾斜以改变从其透射的源的入射光的波长。 光源包括多个发光体(4 ...,e),每个发光体被配置成沿着不同的相关光路(16a,...)发射光,其中位于多个 所述干涉滤光器(20μm)和朝向使用包含待分析血液样本的组织体积(例如手指)的相同分析区域(18)。
Abstract:
A fourth embodiment of the present invention is a method of generating a temperature compensated absorbance spectrum. The method includes the steps of: a. providing a sample spectrum and an estimated temperature of a backdrop object; b. from a set of known temperature spectra related to a known background temperature, selecting at least two known temperature spectra representing a background temperature above and below the estimated temperature; c. comparing the sample spectrum to the known temperature spectra in order to determine a sample background spectrum; and d. calculating an absorbance spectrum from the sample spectrum and the background spectrum.
Abstract:
A fourth embodiment of the present invention is a method of generating a temperature compensated absorbance spectrum. The method includes the steps of: a. providing a sample spectrum and an estimated temperature of a backdrop object; b. from a set of known temperature spectra related to a known background temperature, selecting at least two known temperature spectra representing a background temperature above and below the estimated temperature; c. comparing the sample spectrum to the known temperature spectra in order to determine a sample background spectrum; and d. calculating an absorbance spectrum from the sample spectrum and the background spectrum.
Abstract:
This disclosure is of 1) the utilization of the spectrum from 250 nm to 1150 nm for measurement of prediction of one or more parameters, e.g., brix, firmness, acidity, density, pH, color and external and internal defects and disorders including, for example, surface and subsurface braises, scarring, sun scald, punctures, in N—H, C—H and O—H samples including fruit; 2) an apparatus and method of detecting emitted light from samples exposed to the above spectrum in at least one spectrum range and, in the preferred embodiment, in at least two spectrum ranges of 250 to 499 nm and 500 nm; 3) the use of the chlorophyl band, peaking at 690 nm, in combination with the spectrum from 700 nm and above to predict one or more of the above parameters; 4) the use of the visible pigment region, including xanthophyll, from approximately 250 nm to 499 nm and anthocyanin from approximately 500 to 550 nm, in combination with the chlorophyl band and the spectrum from 700 nm and above to predict the all of the above parameters.
Abstract:
This invention relates to methods for processing in vivo skin auto-fluorescence spectra for determining blood glucose levels. The invention also relates to methods of classifying cells or tissue samples or quantifying a component of a cell or tissue using a multivariate classification or quantification model.
Abstract:
An apparatus and method for non-destructively estimating a tissue property, such as hydration, of a living subject utilizes in vivo spectral measurements made by irradiating skin tissue with near infrared (NIR) light. The apparatus includes a spectroscopic instrument in conjunction with a subject interface. The resulting spectra are passed to an analyzer for further processing, which includes detecting and eliminating invalid spectral measurements, and preprocessing to increase the signal-to-noise ratio. Finally, an estimation model developed from an exemplary set of measurements is applied to predict the tissue hydration for the sample. The method of tissue hydration measurement provides additional information about primary sources of systematic tissue variability, namely, the water content of the epidermal layer of skin and the penetration depth of the incident light. Tissue hydration measurement is therefore suitable for further spectral analysis and quantification of biological and chemical compounds, such as analytes.
Abstract:
An apparatus and method for non-destructively estimating a tissue property, such as hydration, of a living subject utilizes in vivo spectral measurements made by irradiating skin tissue with near infrared (NIR) light. The apparatus includes a spectroscopic instrument in conjunction with a subject interface. The resulting spectra are passed to an analyzer for further processing, which includes detecting and eliminating invalid spectral measurements, and preprocessing to increase the signal-to-noise ratio. Finally, an estimation model developed from an exemplary set of measurements is applied to predict the tissue hydration for the sample. The method of tissue hydration measurement provides additional information about primary sources of systematic tissue variability, namely, the water content of the epidermal layer of skin and the penetration depth of the incident light. Tissue hydration measurement is therefore suitable for further spectral analysis and quantification of biological and chemical compounds, such as analytes.
Abstract:
A method and apparatus for automating the qualification process for chromatographic systems. Automation technology and regression analysis are used for qualifying a chromatography system. The trained operator prepares the chromatography system to ensure that the samples, solvents, and the separation column are ready for analysis. The qualification of the detector, the solvent delivery system, the sample manager, the gradient proportioning system, the column heater, and the delay volume of the chromatography system are completed without the necessity of operator intervention. Regression analysis is performed to compute performance statistics that demonstrate the accuracy, linearity, and precision of the chromatographic system and quantify its suitability for chromatographic analysis.