Abstract:
A spectrograph with a first concave spectrographic diffraction grating is positioned to receive light from an input light source. The first concave spectrographic diffraction grating is configured to provide a diffracted light output dispersing the components of the input light source in a first dispersion direction with a first angular orientation with respect to the plane of the grating. The dispersion forms the input light into an intermediate spectrum. The intermediate spectrum is formed in a focal surface by the once diffracted light. A slit is substantially positioned on the focal surface. A second concave diffraction grating is positioned to receive once diffracted light from the slit and configured to provide a twice diffracted light output, the second concave diffraction grating dispersing the components of the input light source in a second diffraction direction with a second angular orientation with respect to the plane of the grating. The second dispersion angular orientation is different from the first dispersion angular orientation. The second dispersion forms the input light into an output spectrum.
Abstract:
Die Erfindung betrifft eine Anordnung zur Erkennung von Schichten (3; 14), die auf Oberflächen von Bauteilen bzw. Gegenständen (2) angeordnet sind, und Bestimmung der chemischen Eigenschaften und der Oberflächenbeschaffenheit dieser Schichten (3; 14). Sie umfasst eine Lichtquelle (4) zur Beleuchtung der zu untersuchenden Schicht (3; 14) auf der Bauteiloberfläche und Mittel zur Abbildung der Lichtquelle (4) über die zu untersuchende Oberfläche (3') der Schicht (3; 14) auf einen Eintrittsspalt (7). Der Eintrittsspalt (7) wird wellenlängenabhängig durch ein Gitter (10) auf eine zweidimensionale Detektoreinheit (8) abgebildet. Eine Auswerteeinheit (11), die mit der Detektoreinheit (8) elektrisch verbunden ist, dient zur Auswertung und Verarbeitung der von den belichteten Detektorelementen (9) der Detektoreinheit (8) gelieferten Signale.
Abstract:
An optical slit comprises a plate with an elongate aperture, with at least one line of weakness extending from each end of the aperture towards an edge of the plate. The optical slit is secured on a supporting surface and separated into two parts along the lines of weakness. A toolpiece is used to transfer the plate to the supporting surface, the plate being releasably secured to a planar surface of the toolpiece which defines the position and planarity of the plate. The toolpiece continues to define the position and planarity of the plate whilst it is secured in place using gap-filling adhesive. The supporting surface may comprise two parts.
Abstract:
A variable width optical slit mechanism in which the slit width can be controlled with high accuracy over a wide temperature range. A pair of conductive carriages are supported on a conductive guide rail to move freely in noncontact state with the guide rail using an insulating roller or a pair of conductive carriages are supported on an insulating guide rail to move freely on the guide rail using a conductive roller and the pair of carriages are fixed, respectively, with a pair of conductive slit forming members. The pair of carriages are imparted with a resilient force in the direction approaching each other and the pair of slit forming members are normally brought into contact with each other so that the slit width becomes zero. At the time of forming a slip, the pair of carriages are moved in directions away from each other while resisting against the resilient force.
Abstract:
Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth, etc. dimension - rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wavelength, polarization state, or one or more spatial dimensions - or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these, as well as a gigahertz wavefront sensor.
Abstract:
An optical system for analyzing light from a plurality of samples is provided. The optical system includes a plurality of holders adapted to have samples located therein, a collection lens, a transmission grating, and a reimaging lens. The collection lens is configured to receive and substantially collimate light from the samples. The transmission grating is configured to spectrally disperse the substantially collimated light from the collection lens. The reimaging lens is configured to receive the light from the light dispersing element and direct the light onto a light detection device. A method of optically analyzing at least one sample is also provided.
Abstract:
Low cost and form factor spectrometers are disclosed. A spectrometer comprises a substrate, a plurality of optical sensors (979), a plurality of spectral filters (977), an optical manifold (976) and one or more processing elements (980). The plurality of spectral filters (977) and the one or more processing elements (980) are mounted on the substrate. The spectral filters (977) are fixedly positioned over at least a group of the optical sensors (979) and fixedly positioned with respect to the substrate. An optical manifold (976) is fixedly positioned over the spectral filters (977). The optical manifold (976) has a plurality of exit ports and an entrance port, wherein light entering the entrance port is transmitted to an interior portion of the optical manifold (976) and a portion of the light is transmitted from the exit ports through some of the spectral filters (977). The spectrometers are disclosed embedded in printing and scanning devices, computer companion devices, scope-type devices and the like.
Abstract:
The invention relates to a controllable micro-slit line for spectrometers. A first membrane (1) is provided with n identical slits (11), whereby n > 2 and is associated with a second membrane (2) which is placed at a preferably short distance therefrom and which is divided in the direction of displacement into n areas (b1-n) each with n sub-areas (bx1-xn) where x = 1àn. At least one sub-area (bx1-xn) of each area (b1-n) is configured as a non-transparent segment and the remaining sub-areas are embodied in the form of recesses in the membrane (2). The total number of areas (b1-n) is the same as the number of slits (11) in the first membrane (1). The first and second membrane (1; 2) can be moved in such a way using means of displacement so that each slit (1) in the first membrane (1) is optically sealed at least once by one segment of the second membrane (2).
Abstract:
In the spectroscopy module 1, a light absorbing layer 6 having a light-passing hole 6a through which light L1 advancing into a spectroscopic portion 3 passes and a light-passing hole 6b through which light L2 advancing into a light detecting portion 4a of a light detecting element 4 passes is integrally formed by patterning. Therefore, it is possible to prevent deviation of the relative positional relationship between the light-passing hole 6a and the light-passing hole 6b. Further, since the occurrence of stray light is suppressed by the light absorbing layer 6 and the stray light is absorbed, the light detecting portion 4a of the light detecting element 4 can be suppressed from being made incident. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
An optical grain evaluation device is provided with: a light-projecting part 58 through which light from a light source is projected to grain; a light-receiving part 59 on which light transmitted through the grain is incident; a grain evaluation unit 60 configured to evaluate the grain based on information relating to the received light; and a shielding part SH that separates an area between the light source 50 and the light-projecting part 59 from an area between the light-receiving part 59 and the grain evaluation unit 60, and prevents light from the light-projecting part 58 from directly entering the light-receiving part 59. The area between the light source 50 and the light-projecting part 58, and the area between the light-receiving part 59 and the grain evaluation unit 60 are configured, over the entirety of the areas, as air transmission areas in which light is transmitted through air.