Abstract:
A synthetic quartz glass for optical use, to be used by irradiation with light within a range of from the ultraviolet region to the vacuum ultraviolet region, which contains fluorine, which has a ratio of the scattering peak intensity of 2250 cmnull1 (I2250) to the scattering peak intensity of 800 cmnull1 (I800), i.e. I2250/I800, of at most 1null10null4 in the laser Raman spectrum, and which has an absorption coefficient of light of 245 nm of at most 2null10null3 cmnull1.
Abstract translation:一种用于光学用的合成石英玻璃,其用于通过在含有氟的紫外线区域至真空紫外线区域的范围内的光照射而使用,该散射峰强度比例为2250cm <上标> -1 >(I <下标> 2250 highlight>)到800 cm <上标> -1>(I <下标> 800 highlight>)的散射峰强度,即I <下标> 2250 highlight> / I 在激光拉曼光谱中,最多为1×10 <上标> -4>的<下标> 800 highlight>,其吸光系数为245nm,最多为2×10 <上标> -3> cm -1>。
Abstract:
The invention concerns a quartz glass body for an optical component for the transmission of UV radiation with a wavelength of 250 nm and less, especially for a wavelength of 157 nm, as well as a process for the manufacture of the quartz glass body where fine quartz glass particles are formed by flame hydrolysis of a silicon compound, deposited and vitrified. Suitability of a quartz glass as represented by high base transmission and radiation resistance depends on structural properties caused by local stoichiometric deviations, and on the chemical composition. The quartz glass body according to the inventions is distinguished by a uniform base transmission (relative change of base transmission ≦1%) in the wavelength range from 155 nm to 250 nm (radiation penetration depth of 10 mm) of at least 80%, a low OH content (less than 10 ppm by weight) and a glass structure substantially free from oxygen defect centers. A quartz glass body of this kind is manufactured by a process which allows bulk embedding of hydrogen or oxygen into the glass network in that at least a two stage heat treatment takes place at temperatures ranging from 850° C. to 1600° C. before the vitrification, the last stage comprising sintering at a temperature between 1300° C. and 1600° C. in an atmosphere containing hydrogen or oxygen, or a nonflammable mixture of these substances.
Abstract:
High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a “dry,” silicon oxyfluoride glass which contains doped O2 molecules and which exhibits very high transmittance and laser transmission durability in the vacuum ultraviolet (VUV) wavelength region. In addition to containing fluorine and having little or no OH content, the inventive silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm contains intersticial O2 molecules which provide improved endurance to laser exposure. Preferably the O2 doped silicon oxyfluoride glass is characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract:
A cylindrical glass body having a low water content centerline region and method of manufacturing such a cylindrical glass body for use in the manufacture of optical waveguide fiber is disclosed. The centerline region of the cylindrical glass body has a water content sufficiently low such that an optical waveguide fiber made from the cylindrical glass body of the present invention exhibits an optical attenuation of less than about 0.35 dB/km, and preferably less than about 0.31 dB/km at a measured wavelength of 1380 nm. A low water content plug used in the manufacture of such a cylindrical glass body, an optical waveguide fiber having a low water peak, and an optical fiber communication system incorporating such an optical waveguide fiber is also disclosed.
Abstract:
A synthetic silica glass having a high transmittance for vacuum ultraviolet rays, for example F2 excimer laser beam with a wavelength of 157 nm, a high uniformity and a high durability and useful for ultraviolet ray-transparent optical glass materials is produced from a high-purity silicon compound, for example silicon tetrachloride, by heat treating an accumulated porous silica material at a temperature not high enough to convert the porous silica material to a transparent silica glass in an inert gas atmosphere for a time sufficient to cause the OH groups to be condensed and removed from the glass, and exhibits substantially no content of impurities other than OH group a difference between highest and lowest fictional temperatures of 50° C. or less and a transmittance of 157 nm ultraviolet rays through a 10 mm optical path of 60% or more, and optically a OH group content of 1 to 70 ppm, a Cl content less than 1 ppm, a total content of impurity metals of 50 ppb or less, a content of each individual impurity metal less than 10 ppb, and an ultraviolet ray-transmittance at 172 to 200 nm of 40% or more even after the glass is exposed to an irradiation of ultraviolet rays at 160 to 300 nm for one hour.
Abstract:
The invention includes methods of making lithography photomask blanks. The invention also includes lithography photomask blanks and preforms for producing lithography photomask. The method of making a lithography photomask blank includes providing a soot deposition surface, producing SiO2 soot particles and projecting the SiO2 soot particles toward the soot deposition surface. The method includes successively depositing layers of the SiO2 soot particle on the deposition surface to form a coherent SiO2 porous glass preform body comprised of successive layers of the SiO2 soot particles and dehydrating the coherent SiO2 glass preform body to remove OH from the preform body. The SiO2 is exposed to and reacted with a fluorine containing compound and consolidated into a nonporous silicon oxyfluoride glass body with parallel layers of striae. The method further includes forming the consolidated silicon oxyfluoride glass body into a photomask blank having a planar surface with the orientation of the striae layer parallel to the photomask blank planar surface.
Abstract:
An object of the present invention is to provide a synthetic silica glass optical material which exhibits excellent transmittance as well as durability for high output power vacuum ultraviolet rays, being emitted from, for example, ArF excimer lasers and Xe.sub.2 excimer lamps, and to provide a method for producing the same. A synthetic silica glass optical material for high output power vacuum ultraviolet rays made from ultra high purity synthetic silica glass for use in the wavelength region of from 165 to 195 nm, containing OH groups at a concentration of from 5 to 300 wtppm with a fluctuation width in OH group concentration (.DELTA.OH/cm) of 10 wtppm or less, containing hydrogen molecules at a concentration of from 1.times.10.sup.17 to 1.times.10.sup.19 molecule/cm.sup.3 with a fluctuation width in hydrogen molecule concentration (.DELTA.H.sub.2 /cm) of 1.times.10.sup.17 molecule/cm.sup.3 or lower, and containing chlorine at a concentration of 50 wtppm or lower. Also claimed is a method for producing the same.
Abstract:
A singlemode optical fiber 700 having very low loss at 1385 nm, and a practical method for making same are disclosed. A core rod 20 is fabricated using vapor axial deposition to have a deposited cladding/core ratio (D/d) that is less than 7.5. The core rod is dehydrated in a chlorine- or fluorine-containing atmosphere at about 1200.degree. C. to reduce the amount of OH present to less than 0.8 parts per billion by weight, and then consolidated in a helium atmosphere at about 1500.degree. C. to convert the porous soot body into a glass. The consolidated core rod is elongated using an oxygen-hydrogen torch that creates a layer of OH ions on the surface of the rod that are largely removed by plasma etching. Finally, the core rod is installed in a glass tube 40 having a suitably low OH content. Thereafter, the tube is collapsed onto the rod to create a preform 60. Conventional methods are employed for drawing an optical fiber from the preform and applying one or more protective coatings 75, 76. The disclosed method is suitable for commercial production of low-OH fiber. Significantly, the fiber's loss at 1385 nm is reduced to a level that is less than its loss at 1310 nm, thereby rendering the entire wavelength region 1200-1600 nm suitable for optical transmission. In particular, wave-division-multiplex systems are now available to transmit optical signals over distances greater than 10 km in the wavelength region between 1360 nm and 1430 nm.
Abstract:
In an optical component having a cylindrical core of quartz glass and a coaxial jacket of quartz glass containing a dopant which decreases the index of refraction, the jacket glass contains a viscosity-increasing stiffening agent to reduce tensile strength on the core at drawing temperature of 1000.degree. to 2500.degree. C. or a relaxation agent for lowering the viscosity of the quartz glass in a concentration which is lower than that present in the core glass.
Abstract:
A glass preform which is used for fabricating an optical fiber, has substantially no bubbles therein and contains sufficient amount of fluorine is produced by a method comprising steps of: forming a porous glass soot body from a glass-forming raw material, removing trapped gas and water from pores of the soot body by heating the soot body under pressure lower than several ten Torr. at a temperature at which the soot body is not vitrified, filling the pores of the soot body with a gas containing SiF.sub.4 and uniformly adding fluorine to the soot body, vitrifying the fluorine-added soot body into a transparent glass body, boring said transparent glass body to form a bore therein, and inserting a highly pure quartz rod in said bore to form a glass preform, or a method forming a glass soot composite body having a core portion consisting of a solid glass and a peripheral portion consisting of a porous glass mass, removing trapped gas and water from pores of the soot composite body by heating the soot composite body under a pressure lower than several ten Torr. at a temperature at which the porous glass mass is not vitrified, filling the pores in the porous glass mass of the soot composite body with a gas containing SiF.sub.4 and uniformly adding fluorine to the soot glass mass, and vitrifying the fluorine-added soot glass mass into a transparent glass mass to form a glass preform.