Abstract:
A novel and advantageous cathode structure for a field emission display apparatus is disclosed. A given pixel comprises a multiplicity of spaced apart emitter bodies on a support. A given emitter body comprises diamond and/or rare earth boride, and has a relatively sharp geometrical feature that facilitates electron emission from the emitter body. By way of example, the emitter body comprises diamond bodies grown on a support, or it comprises a pre-existing diamond particle that was placed on the support. Such emitter bodies generally can be provided easily and at low cost, and typically have naturally occurring sharp geometrical features such as points and edges. We have also discovered that appropriately grown rare earth boride films of thickness 30 nm or less may substantially improve electron emission from emitter bodies, and some preferred embodiments of the invention comprise a cathode structure that comprises a thin layer of, e.g., LaB.sub.6 on the emitter bodies. Methods of making cathodes according to the invention are also disclosed.
Abstract:
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Abstract:
Applicants have discovered methods for making electron emitters using commercially available diamond particles treated to enhance their capability for electron emission under extremely low electric fields. Specifically, applicants have discovered that electron emitters comprising ultra-fine (5-10,000 nm) diamond particles heat-treated by a hydrogen plasma, can produce electron emission current density of at least 0.1 mA/mm.sup.2 at extremely low electric fields of 0.5-1.5 V/.mu.m. These field values are about an order of magnitude lower than exhibited by the best defective CVD diamond and almost two orders of magnitude lower than p-type semiconducting diamond. Emitters are preferably fabricated by suspending the ultra-fine diamond particles, preferably in the nanometer size range, in an aqueous solution, applying the suspension as a coating onto a conducting substrate such as n-type Si or metal, and then subjecting the coated substrate to a plasma of hydrogen, preferably at temperatures above 300.degree. C. for a period of 30 minutes or longer. The resulting emitters show excellent emission properties such as extremely low turn-on voltage, good uniformity and high current densities. It is further found that the emission characteristics remain the same even after the plasma treated diamond surface is exposed to air for several months.
Abstract translation:申请人已经发现使用经过处理以提高其在极低电场下电子发射能力的市售金刚石颗粒来制造电子发射体的方法。 具体地,申请人已经发现,包含由氢等离子体热处理的超细(5-10,000nm)金刚石颗粒的电子发射体可在0.5-1.5的极低电场下产生至少0.1mA / mm 2的电子发射电流密度 V /亩。 这些场值比由最好的有缺陷的CVD金刚石显示的低一个数量级,比p型半导体金刚石低两个数量级。 优选地,通过将优选在纳米尺寸范围的超细金刚石颗粒悬浮在水溶液中,将悬浮液作为涂层施涂到诸如n型Si或金属的导电基材上,然后对涂覆的基材 至氢的等离子体,优选在高于300℃的温度下持续30分钟或更长时间。 所得到的发射体显示出优异的发射特性,例如极低的导通电压,良好的均匀性和高的电流密度。 进一步发现即使在等离子体处理的金刚石表面暴露于空气几个月之后,发射特性也保持不变。
Abstract:
A field emission cathode for use in flat panel displays is disclosed comprising a layer of conductive material and a layer of amorphic diamond film, functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities. Use of the cathode to form a computer screen is also disclosed along with the use of the cathode to form a fluorescent light source.
Abstract:
In accordance with the invention, a field emission device is made by disposing emitter material on an insulating substrate, applying masking particles to the emitter material, applying an insulating film and a gate conductor film over the masking particles and emitter material and removing the particles to reveal a random distribution of apertures to the emitter material. The result is a novel and economical field emission device having numerous randomly distributed emission apertures which can be used to make low cost flat panel displays.
Abstract:
A display device for use in conjunction with a computer system includes a cathode having a layer of conductive material and a layer of low-effective work function material deposited over the conductive material wherein the low-effective work function material has an emission surface comprising a plurality of distributed localized electron emission sites. The emission sites may have electrical properties which are discontinuous from each other. The emission surface may be relatively flat.
Abstract:
Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
Abstract:
The present invention relates generally to a new integrated Vacuum Microelectronic Device (VMD) and a method for making the same. Vacuum Microelectronic Devices require several unique three dimensional structures: a sharp field emission tip, accurate alignment of the tip inside a control grid structure in a vacuum environment, and an anode to collect electrons emitted by the tip. Also disclosed is a new structure and a process for forming diodes, triodes, tetrodes, pentodes and other similar structures. The final structure made can also be connected to other similar VMD devices or to other electronic devices.
Abstract:
A system and method is available for fabricating a field emitter device, where in an emitter material, such as copper, is deposited over a resistive layer which has been deposited upon a substrate. Two ion beam sources are utilized. The first ion beam source is directed at a target material, such as molybdenum, for sputtering molybdenum onto the emitter material. The second ion beam source is utilized to etch the emitter material to produce cones or micro-tips. A low work function material, such as amorphous diamond, is then deposited over the micro-tips.
Abstract:
In accordance with the present invention, a field emission device is made by pre-activating ultra-fine diamond particles before applying them to the device substrate. This initial pre-activation increases manufacturing speed and reduces cost and reduces potential damage to the device substrate from exposure to high temperature hydrogen plasma.