Abstract:
An apparatus and a method for stabilizing the threshold voltage in an active matrix field emission device. The method includes the formation of radiation blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
Semiconductor layers are formed on a substrate, and an insulating film is formed on the semiconductor layers. On the insulating film is formed a gate electrode, which has emitter holes formed therein. In the emitter holes are formed emitters, which are provided with emitter electrodes via the semiconductor layers. The emitters are grouped into a plurality of emitter groups each having at least one emitter. The emitters of each of the emitter groups are connected to each of the semiconductor layers. Common electrodes are formed across the semiconductor layers via the insulating film. Thereby, a field emission type cold cathode element is obtained which has nonlinear characteristics of providing a low resistance in normal operation and a high resistance upon discharges.
Abstract:
A field emitter cell includes a thin-film-edge emitter normal to the gate layer. The field emitter cell may include a conductive substrate layer, an insulator layer having a perforation, a gate layer having a perforation, an emitter layer, and other optional layers. The perforation in the gate layer is larger and concentrically offset with respect to the perforation in the insulating layer and may be of a tapered construction. Alternatively, the perforation in the gate layer may be coincident with, or larger or smaller than, the perforation in the insulating layer, provided that the gate layer is shielded from the emitter from a direct line-of-sight by a nonconducting standoff layer. Optionally, the thin-film-edge emitter may include incorporated nanofilaments. The field emitter cell has low gate current, making it useful for various applications such as field emitter displays, high voltage power switching, microwave, RF amplification and other applications that require high emission currents.
Abstract:
A cold cathode field emission device comprising (a) a cathode electrode formed on a supporting substrate, and (b) a gate electrode which is formed above the cathode electrode and has an opening portion, and further comprising (c) an electron emitting portion composed of a carbon film formed on a surface of a portion of the cathode electrode which portion is positioned in a bottom portion of the opening portion.
Abstract:
A field emission display includes electrostatic discharge protection circuits coupled to an emitter substrate and an extraction grid. In the preferred embodiment, the electrostatic discharge circuit includes diodes reverse biased between grid sections and a first reference potential or between row lines and a second reference potential. The diodes provide a current path to discharge static voltage and thereby prevent a high voltage differential from being maintained between the emitter sets and the extraction grids. The diodes thereby prevent the emitter sets from emitting electrons at a high rate that may damage or destroy the emitter sets. In one embodiment, the diodes are coupled directly between the grid sections and the row lines. In one embodiment, the diodes are formed in an insulative layer carrying the grid sections. In another embodiment, the diodes are integrated into the emitter substrate.
Abstract:
The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device includes a transistor configured to control the emission of electrons from an emitter.
Abstract:
A field emitter cell includes a thin-film-edge emitter normal to the gate layer. The field emitter cell may include a conductive substrate layer, an insulator layer having a perforation, a gate layer having a perforation, an emitter layer, and other optional layers. The perforation in the gate layer is larger and concentrically offset with respect to the perforation in the insulating layer and may be of a tapered construction. Alternatively, the perforation in the gate layer may be coincident with, or larger or smaller than, the perforation in the insulating layer, provided that the gate layer is shielded from the emitter from a direct line-of-sight by a nonconducting standoff layer. Optionally, the thin-film-edge emitter may include incorporated nanofilaments. The field emitter cell has low gate current, making it useful for various applications such as field emitter displays, high voltage power switching, microwave, RF amplification and other applications that require high emission currents.
Abstract:
A non-power generating current limiting device such as a field effect transistor is provided to output a regulated current in dependence upon a control voltage. An electron field emitter is connected to a drain or output of the non-power generating current limiting device to receive the regulated current. A tip of the electron field emitter emits electrons towards a collector anode. An extractor gate can be provided between the electron field emitter and the collector anode to control the rate of electron emission from the electron field emitter. Because the non-power generating current limiting device regulates the current to the electron field emitter, a maximum current output of the electron field emitter is limited to the regulated current from the voltage controlled current source. The electron field emitter is thus protected from destruction due to excess current. The non-power generating current limiting device can also be used to modulate electron emission from the field emitter.
Abstract:
The present invention is directed to fabricating a MOSFET-controlled FEA, in which the emitter array and the cathode electrode are separated and connected to each other by a MOSFET, the cathode electrode and the n-well beneath the emitter array thereby being used as a source and a drain of the MOSFET.
Abstract:
A field emission cold cathode has a plurality of emitters in a group for each gate electrode and a serial resistance layer divided into a plurality resistance layer sections each corresponding to one of the emitters. The resistance layer is divided by a deep trench filled with an insulator layer or conductive layer forming a P-N junction between the same and the resistance layer section. A linear voltage-current characteristic is obtained by a stable resistance of the resistance layer section to prevent a short-circuit failure between the emitter and the gate electrode.