Abstract:
A storage system for organizing and maintaining metadata in a distributed network. The system includes: a network; a plurality of distributed nodes configured to communicate through the network; a plurality of block devices configured to communicate with the plurality of distributed nodes through the network; and a management server configured to communicate with each of the plurality of distributed nodes and block devices and further configured to arbitrarily associate metadata and data to any of the plurality of distributed nodes such that a global copy of the metadata does not exist in one or more fixed locations known to all distributed nodes.
Abstract:
An acoustic sensor detects binding of a nucleic acid analyte in an impure liquid sample by measurement of the energy of the acoustic wave resulting from the binding of the nucleic acid target to the sensor surface. The analysis may be preceded by carrying out a nucleic acid amplification procedure in situ on a crude or impure biological sample and the analysis is tolerant of the presence of reagents or by-products of the amplification procedure, and also materials present from the initial biological sample.
Abstract:
A processor-implemented method for foreground signal suppression. The method includes: capturing a plurality of input signals using a plurality of sensors within a sound field; subjecting each input signal to a short-time Fourier transform to transform each signal into a plurality of non-overlapping subband regions; estimating the diffuseness of the sound field based on the plurality of input signals; decomposing each of the plurality of input signals into a diffuse component and a directional component based on the diffuseness estimate; applying a spatial analysis operation to filter the directional component of each of the plurality of input signals, wherein the spatial analysis operation includes applying a set of beamformers to the directional components to produce a plurality of beamformer signals; and processing the plurality of beamformer signals to decompose the signal into a foreground channel and a background channel.
Abstract:
A processor-implemented method for direction-of-arrival estimation. The method includes: receiving a plurality of input signals at a sensor array, each sensor having an angle estimator and a cross-spectra term; transforming the input signal from each of the plurality of sensors to the time-frequency domain using a short-time Fourier transform; constructing a Perpendicular Cross-Spectra Difference (PCSD) for each of the plurality of angle estimators associated with each sensor for each frequency bin and time index; calculating an auxiliary observation for each of the angle estimators; and determining an impinging angle for each of the angle estimators based on the auxiliary observation.
Abstract:
The ARS offers tracking, estimation of position, orientation and full articulation of the human body from marker-less visual observations obtained by a camera, for example an RGBD camera. An ARS may provide hypotheses of the 3D configuration of body parts or the entire body from a single depth frame. The ARS may also propagates estimations of the 3D configuration of body parts and the body by mapping or comparing data from the previous frame and the current frame. The ARS may further compare the estimations and the hypotheses to provide a solution for the current frame. An ARS may select, merge, refine, and/or otherwise combine data from the estimations and the hypotheses to provide a final estimation corresponding to the 3D skeletal data and may apply the final estimation data to capture parameters associated with a moving or still body.
Abstract:
A method for storage input/output (I/O) path configuration in a system that includes at least one storage device in network communication with at least one computer processor; the method comprising providing in the I/O path into at least: (a) a block-based kernel-level filesystem, (b) an I/O cache module controlling an I/O cache implemented on a first computer readable medium, (c) a journaling module, and (d) a storage cache module controlling a storage cache implemented on a second computer readable medium, the second computer readable medium having a lower read/write speed than the first computer readable medium. Furthermore, the steps of translating by the filesystem, based on computer executable instructions executed by the at least one processor, a file I/O request made by an application executed by the at least one computer processor into a block I/O request and fulfilling by the at least one processor the block I/O request from one of the I/O cache and the storage cache complete the I/O operation.
Abstract:
The present invention relates to nucleic acids comprising a nucleotide sequence encoding at least a portion of an enzyme which catalyzes the synthesis of chitin in arthropods, inhibitors directed to said enzyme, and a method for developing said inhibitors.
Abstract:
Method and devices using lasers to reduce reflection of transparent solids in the optical spectrum, coatings and devices employing transparent solids are disclosed. The lasers are used to shape surfaces of the transparent solid materials by raising the temperature of the material to around the melting temperature, and thereby generate desired target nanostructure two-dimensional antireflection pattern arrays on the surfaces. The laser fluence value, wavelength, repetition rate, pulse duraction and number of consecutive laser pulses per focus spot are selected, and a desired focus spot distribution on the surface of the transparent solid material is identified. The transparent solid material is relatively translated to generate the desired nanostructure two-dimensional pattern array.
Abstract:
The ARS offers tracking, estimation of position, orientation and full articulation of the human body from marker-less visual observations obtained by a camera, for example an RGBD camera. An ARS may provide hypotheses of the 3 D configuration of body parts or the entire body from a single depth frame. The ARS may also propagates estimations of the 3 D configuration of body parts and the body by mapping or comparing data from the previous frame and the current frame. The ARS may further compare the estimations and the hypotheses to provide a solution for the current frame. An ARS may select, merge, refine, and/or otherwise combine data from the estimations and the hypotheses to provide a final estimation corresponding to the 3 D skeletal data and may apply the final estimation data to capture parameters associated with a moving or still body.
Abstract:
A computer readable storage medium includes executable instructions to analyze an asynchronous, multi-rail digital circuit to identify a gating sub-circuit and a gated sub-circuit. The asynchronous, multi-rail digital circuit is transformed to segregate the gating sub-circuit and the gated sub-circuit.