Abstract:
A method for rotating a combdriven device about an axis uses applied bias force along with applied voltage between first and second comb fingers to controllably rotate the device about one or two axis. One mode of the present invention includes measuring the position of a rotating element and providing feedback to control the angular position thereof by changing bias force and/or drive voltage. The present invention can be employed with prior-art staggered combdrives, single layer self-aligned combdriven devices, and in a broad range of applications in optical telecommunication switching, video, biomedical, inertial sensors, and in storage magnetic disk drives.
Abstract:
A two-dimensional scanner consists of a rotatable gimbal structure with vertical electrostatic comb-drive actuators and sensors. The scanner's two axes of rotation may be controlled independently by activating two sets of vertical comb-drive actuators. The first set of vertical comb-drive actuator is positioned in between a outer frame of the gimbal structure and the base, and the second set of vertical comb-drive actuator is positioned in between the inner part of the gimbal structure and the outer frame of the gimbal structure. The inner part of the gimbal structure may include a reflective surface, and the device may be used as a mirror. Furthermore, the capacitance of the vertical comb-drives may be measured to monitor the angular position of the mirror, and the capacitive position-monitoring signal may be used to implement closed-loop feedback control of the mirror angle. The two-dimensional scanner may be fabricated in a semiconductor process. Two-dimensional scanners may be used to produce fiber-optic switches.
Abstract:
An optical switch module having a movable mirror (312) disposed between two fixed mirrors (310, 314). All three mirrors are aligned parallel to each other in a linear array to form a crossbar switch. The movable mirror (312) moves between a first position and a second position to selectively couple optical signals between two inputs and two outputs. The basic switch module may be scaled up to form an apparatus that incorporates N movable mirrors and N+1 fixed mirrors, where N is an integer greater than zero. Such an apparatus can accommodate 2N fiber inputs and 2N fiber outputs, e.g., in an optical add/drop multiplexer (OADM). The parallel configuration of the switch module takes advantage of existing lens array and fiber V-groove technology to facilitate integration of the fibers and collimators in the module, thereby reducing the difficulty and cost associated with alignment, assembly, and packaging.
Abstract:
A multi-layer vertical comb-drive actuator includes a first comb structure having a plurality of first comb fingers (14) and a second comb structure having a plurality of second comb fingers (24), wherein the first and second comb fingers are substantially interdigitated. The first and second comb fingers may include two or more stacked conductive layers electrically isolated from each other by an insulating layer or an air gap. Alternatively, either the first or second comb fingers may include only one conductive layer. An application of a voltage (15) between the first and second comb fingers causes the second comb structure to move relative to the first comb structure. The present invention includes a 2D-gimble configuration to rotate a movable element along two axes.
Abstract:
A two-dimensional scanner consists of a rotatable gimbal structure with vertical electrostatic comb-drive actuators and sensors. The scanner's two axes of rotation may be controlled independently by activating two sets of vertical comb-drive actuators. The first set of vertical comb-drive actuator is positioned in between a outer frame of the gimbal structure and the base, and the second set of vertical comb-drive actuator is positioned in between the iner part of the gimbal structure and the outer frame of the gimbal structure. The inner part of the gimbal structure may include a reflective surface, and the device may be used as a mirror. Furthermore, the capacitance of the vertical comb-drives may be measured to monitor the angular position of the mirror, and the capacitive position-monitoring signal may be used to implement closed-loop feedback control of the mirror angle. The two-dimensional scanner may be fabricated in a semiconductor process. Two-dimensional scanners may be used to produce fiber-optic switches.