Abstract:
The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
Abstract:
Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by- synthesis reactions. Some methods provided herein relate to improving signal (and also signal-to-noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
Abstract:
The invention is directed to apparatus and chips comprising a large scale chemical field effect transistor arrays that include an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid for analysis. In one aspect such transistor arrays have a pitch of 10 μm or less and each sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region. In one embodiment, the characteristic of said chemical or biological sample is a concentration of a charged species and wherein each of said chemical field effect transistors is an ion-sensitive field effect transistor having a floating gate with a dielectric layer on a surface thereof, the dielectric layer contacting said sample fluid and being capable of accumulating charge in proportion to a concentration of the charged species in said sample fluid. In one embodiment such charged species is a hydrogen ion such that the sensors measure changes in pH of the sample fluid in or adjacent to the sample-retaining region thereof. Apparatus and chips of the invention may be adapted for large scale pH-based DNA sequencing and other bioscience and biomedical applications.
Abstract:
Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
The present invention relates to the field of fluid dynamics. More specifically, this invention relates to methods and apparatus for conducting densely packed, independent chemical reactions in parallel in a substantially two-dimensional array. Accordingly, this invention also focuses on the use of this array for applications such as DNA sequencing, most preferably pyrosequencing, and DNA amplification.
Abstract:
Disclosed herein are methods and apparatuses for sequencing a nucleic acid. In one aspect, the method includes annealing a population of circular nucleic acid molecules to a plurality of anchor primers linked to a solid support, and amplifying those members of the population of circular nucleic acid molecules which anneal to the target nucleic acid, and then sequencing the amplified molecules by detecting the presence of a sequence by-product such as pyrophosphate.
Abstract:
A magnetic resonance imaging (MRI) system, comprising: a magnetics system comprising: a Bo magnet configured to provide a Bo field for the MRI system; gradient coils configured to provide gradient fields for the MRI system; and at least one RF coil configured to detect magnetic resonance (MR) signals; and a controller configured to: control the magnetics system to acquire MR spatial frequency data using non-Cartesian sampling; and generate an MR image from the acquired MR spatial frequency data using a neural network model comprising one or more neural network blocks including a first neural network block, wherein the first neural network block is configured to perform data consistency processing using a non-uniform Fourier transformation.
Abstract:
Some aspects include a method of detecting change in degree of midline shift in a brain of a patient. While the patient remains positioned within the low-field magnetic resonance imaging device, acquiring first magnetic resonance (MR) image data and second MR image data of the patient's brain; providing the first and second MR data as input to a trained statistical classifier to obtain corresponding first and second output, identifying, from the first output, at least one initial location of at least one landmark associated with at least one midline structure of the patient's brain; identifying, from the second output, at least one updated location of the at least one landmark; and determining a degree of change in the midline shift using the at least one initial location of the at least one landmark and the at least one updated location of the at least one landmark.