Abstract:
PURPOSE: A method for fabricating a MOS(metal oxide semiconductor) transistor is provided to simultaneously form a silicide layer and a gate silicide layer in a source/drain region and prevent channel ion implantation during a source/drain ion implantation process by performing a total gate silicidation process. CONSTITUTION: An insulated gate pattern(7) in which a silicon pattern and a sacrificial layer pattern are sequentially stacked is formed on a semiconductor substrate. The sidewall of the gate pattern is covered with a spacer. By using the spacer and the gate pattern as an ion implantation mask, impurity ions are implanted into the semiconductor substrate to form a source/drain region(11). The sacrificial layer pattern on the semiconductor substrate having the source/drain region is eliminated to expose the silicon pattern. The exposed silicon pattern is completely converted into a gate silicide layer while a source/drain silicide layer is selectively formed on the source/drain region.
Abstract:
PURPOSE: A trench isolation method of a semiconductor device is provided to prevent a dent generated at edge portions of a trench and to reduce a leakage current by forming an oxide layer at both sidewalls of a mask insulating layer. CONSTITUTION: A mask insulating pattern(103) including a pad oxide(101) and a silicon nitride layer(102) is formed on a desired region of a semiconductor substrate(100). A trench(110) is formed by etching the exposed substrate(100) using the mask insulating pattern(103) as a mask. An oxide layer(105) is formed on the surface of the mask insulating pattern(103) and at inner walls of the trench(110). A trench liner layer(109) is formed on the oxide layer(105). An isolation layer(111) is filled into the trench(110). Then, the mask insulating pattern(103) is removed.
Abstract:
PURPOSE: A method for forming the trench isolation having the sidewall oxide films of different thickness is provided to have the thickness different each other at an isolation area of the N-channel and the P-channel MOS transistor in order not to surround the holes around the trench isolation area of the P-channel MOS transistor for a compensation type MOS transistor. CONSTITUTION: The first and the second trench(131,132) are formed on the first and the second isolation area(I,II) separated each other. A silicon film including the nitrogen in a side part and a bottom part of the second trench is formed by implanting the nitrogen into the second trench. The first sidewall oxide film(161) having the first thickness and the second sidewall oxide film(162) having the second thickness thinner than the first thickness are formed on the first trench by carrying out an oxidation process. A stress buffering liner(170) is formed on the surfaces of the first and the second sidewall oxide film. The inside of the first and the second trench is buried with an insulation material.
Abstract:
PURPOSE: A transistor of a semiconductor device and a manufacturing method thereof are to form a deep junction region in the middle region between gate lines and to form a shallow junction region between the deep junction region and a gate spacer, thereby reducing leakage current while improving an SCE(short channel effect). CONSTITUTION: A substrate(34) is provided with an active region and a field region. In the field region is formed a trench(36) with which an insulating layer is filled to form an isolation layer(38). On the active region are successively formed a gate insulating layer, the first/second gate conductive layers and a gate passivation layer, and using a photolithography, a gate line(42) consisting of a gate insulating layer pattern(42a), the first/second gate conductive layers patterns and a gate passivation layer pattern are formed thereafter. On the resultant structure, a spacer substance layer is formed and then anisotropically etched to form a gate spacer(44) until the surface of the substrate is exposed.
Abstract:
PURPOSE: A method for manufacturing a T-shaped isolation layer is provided to improve an integration degree of a semiconductor device, by preventing a void from being generated in the isolation layer, and by guaranteeing a sufficient isolation distance in a small space. CONSTITUTION: A predetermined part of a semiconductor substrate is etched to form a narrow width trench region having the first width and depth. The first gap filling dielectric layer filling the narrow width trench region is formed. A wide width trench region having the second width wider than the first width and the second depth deeper than the first depth is formed on the narrow width trench region. A T-shaped isolation layer is formed by forming the second gap filling dielectric layer filling the wide width trench region.
Abstract:
A metal oxide FET(field effect transistor) with improved short channel effect is provided to control short channel effect by forming a buried isolation region between a deep source/drain region and a halo region. A gate(102,202) is formed on a semiconductor substrate(150). Sidewall spacers(105,205) adjoin opposing walls of the gate. The semiconductor substrate is etched to form a trench wherein the sidewall of the trench is aligned with the sidewall spacer. An insulation layer is positioned near the sidewall of the trench. The trench is partially filled with a semiconductor material. The exposed part of the insulation layer is removed. The trench is completely filled with the semiconductor material. Dopants of a first conductivity type are injected into the semiconductor materials in the trench. The insulation layer can include one of a nitride layer or the oxide layer.
Abstract:
A semiconductor integrated circuit device and a manufacturing method thereof are provided to maintain a constant operation speed by preventing a thickness of a gate oxide film from being increased. A first transistor region(A) and a second transistor region(B) are defined on a semiconductor substrate(100). A first transistor(200) is formed in the first transistor region and includes a source/drain region(240), a first gate insulation film(210), a first gate, and a first spacer(230). The first gate is formed on the first gate insulation film. The first spacer is formed at a sidewall of the first gate. A second transistor(300) is formed in the second transistor region and includes a source/drain region(340), a second gate insulation film(310), a second gate, and a second spacer(330). The second gate is formed on the second gate insulation film. The second spacer is formed at a sidewall of the second gate. The second spacer is wider than the first spacer.
Abstract:
완전한 실리사이드 게이트를 갖는 모스 트랜지스터 제조방법을 제공한다. 이 방법은 반도체기판의 소정영역에 소자분리막을 형성하여 활성영역을 한정한다. 상기 활성영역의 상부를 가로지르는 절연된 게이트 패턴을 형성하되, 상기 게이트 패턴은 차례로 적층된 실리콘 패턴 및 더미 게이트 패턴을 갖도록 형성한다. 상기 게이트 패턴의 측벽 상에 게이트 스페이서를 형성한다. 상기 게이트 패턴 및 게이트 스페이서를 이온주입 마스크로 사용하여 상기 활성영역 내에 불순물 이온들을 주입하여 소오스/드레인 영역들을 형성한다. 상기 더미 게이트 패턴을 선택적으로 제거하여 상기 실리콘 패턴을 노출시킨다. 상기 노출된 실리콘 패턴의 전체를 실리사이드막으로 변환시킴과 동시에 상기 소오스/드레인 영역의 표면들에 실리사이드막을 형성한다. 실리사이드막, 더미 게이트 패턴
Abstract:
단결정 실리콘층에의 저메인(GeH 4 ) 가스 전처리를 포함하는 바이폴라(bi polar) 소자 제조 방법 및 이에 의한 바이폴라 소자를 제공한다. 본 발명의 일 관점에 의한 제조 방법은, 컬렉터(collector) 영역 상에 베이스(base) 영역을 구성하는 단결정 실리콘층을 형성하고, 그 상에 에미터(emitter) 영역을 구성하는 다결정 실리콘층을 형성할 때, 저메인 가스를 사용하는 전처리 단계를 단결정 실리콘층 상에 상기 다결정 실리콘층을 형성하는 단계와 인시튜로 수행한다. 이에 따라, 단결정 실리콘층 상에 원하지 않게 존재할 수 있는 산화층을 용이하게 효과적으로 제거할 수 있고, 단결정 실리콘층 상에 저머늄(Ge)을 포함하는 층이 형성되도록 허용하여 다결정 실리콘층에 실리콘 재배치(Si-rearrangement) 현상이 발생하는 것을 방지할 수 있다.
Abstract:
완전한 실리사이드 게이트를 갖는 모스 트랜지스터 제조방법을 제공한다. 이 방법은 반도체기판의 소정영역에 소자분리막을 형성하여 활성영역을 한정한다. 상기 활성영역의 상부를 가로지르는 절연된 게이트 패턴을 형성하되, 상기 게이트 패턴은 차례로 적층된 실리콘 패턴 및 더미 게이트 패턴을 갖도록 형성한다. 상기 게이트 패턴의 측벽 상에 게이트 스페이서를 형성한다. 상기 게이트 패턴 및 게이트 스페이서를 이온주입 마스크로 사용하여 상기 활성영역 내에 불순물 이온들을 주입하여 소오스/드레인 영역들을 형성한다. 상기 더미 게이트 패턴을 선택적으로 제거하여 상기 실리콘 패턴을 노출시킨다. 상기 노출된 실리콘 패턴의 전체를 실리사이드막으로 변환시킴과 동시에 상기 소오스/드레인 영역의 표면들에 실리사이드막을 형성한다.