Abstract:
The present invention relates to a high power optical fiber femtosecond laser resonator generated by the combination mode locking of nonlinear polarization rotation and saturable absorption. An optical fiber femtosecond laser resonator, which is an optical fiber based resonator of a ring-type structure, includes a nonlinear polarization rotation mode locking part which is formed on the resonator and generates an UHF pulse by pulse shaping, and a saturable absorption mode locking part which performs the nonlinear filtering of pulse amplitude, prevents the excess nonlinear phenomenon of the inner part of the resonator, generates an initial pulse, and removes a dispersive wave generated in a soliton pulse.
Abstract:
본 발명은 극초단 펄스 레이저와 수분 응고를 이용한 절단 장치 및 방법에 관한 것으로, 절단 장치에 있어서, 극초단 펄스 레이저를 출력하여 가공 대상물에 공동(void)을 형성시키기 위해 집광렌즈로 집광하여 상기 가공 대상물에 레이저를 조사하는 레이저소스, 상기 가공 대상물 저면을 접하여 내측으로 소정의 공간부를 형성하고, 양쪽으로 수증기 공급부와 냉각 기체 공급부가 구비된 베이스 플레이트, 상기 수증기 공급부로 수증기를 공급하는 수증기 공급수단; 및 상기 냉각 기체 공급부로 냉각 기체를 공급하는 냉각 기체 공급수단을 포함하고, 상기 레이저소를 통해 가공 대상물에 조사하여 균열을 발생시키고, 수증기를 공급한 후 냉각 기체를 공급하여 수증기 응고에 따른 팽창으로 기판을 절단하는 것을 특징으로 한다. 이와 같이 구성되는 가공 대상물 표면으로 파편 입자 생성을 방지할 수 있고, 수분 팽창을 이용하여 최종적으로 절단하기 때문에 공정의 간소화, 공정의 청정성을 확보할 수 있다.
Abstract:
PURPOSE: Laser processing apparatus and method using the dispersion controlling of pulse laser are provided to control the processing depth of a product without moving a laser condensing lens. CONSTITUTION: A laser processing method using the dispersion controlling of pulse laser comprises the following steps: controlling the dispersion of the pulse laser(700); irradiating the pulse laser to a product(103) for processing; and setting the pulse width(W) of the pulse laser in the product on the predetermined point after the applying point of the pulse layer.
Abstract:
PURPOSE: Laser processing apparatus and method using ultrasonic waves are provided to enable users to obtain a clean processed surface, and to prevent the degeneration of a processed product. CONSTITUTION: A laser processing method using ultrasonic waves comprises a step of irradiating an object(102) with laser(107) for producing reformed portions(103) on the object. The ultrasonic waves(106) are transmitted to the reformed portions. Cracks(110) are extended from the reformed portions by the ultrasonic waves.
Abstract:
PURPOSE: Laser processing condition monitoring apparatus and method using plasma are provided to effectively monitor and analyze the processed condition of objects using the plasma generated from the processed objects. CONSTITUTION: A laser processing condition monitoring method comprises the following steps: irradiating an object(102) with a pulse laser(107) for processing; and detecting light(200) transmitted from the plasma(106) generated from the object for monitoring the processed condition of the object. The peak power of the pulse laser is controlled to process the object with a nonlinear optic phenomenon.
Abstract:
PURPOSE: A cutting method through control of light intensity depending on the time of femtosecond pulse laser is provided to maximize the effect of a processing mechanism, which bases on multi photon ionization and avalanche ionization. CONSTITUTION: A cutting method through control of light intensity depending on the time of femtosecond pulse laser comprises next steps. At least two femtosecond laser pulses are generated separately to have a time interval using pulse delay(120). Each pulse excites electrons on a target(200) based on multi photon Ionization. The electrons excited from the multi photon ionization through avalanche ionization are used as seeds to increase the ionization of a material. Each of at least two femtosecond laser pulses is output, wherein one or more of their pulse width, pulse energy threshold, and inter-pulse interval are different.
Abstract:
PURPOSE: A processed-surface cutting method using a PZT(piezoelectric) element applying femtosecond pulse laser is provided to enhance the cutting speed since the temtosecond pulse laser is used for a bendable or expandable PZT element, and the modified area of a target is separated along a cutting line quickly. CONSTITUTION: A processed-surface cutting method using a PZT(piezoelectric) element applying femtosecond pulse laser is as follows. A transparent material, a wafer, and a target(101) like a substrate are attached to an expanding tape(103), and the expanding tape is attached onto a bendable PZT element(102). The femtosecond pulse laser is irradiated to the cut part of the target for several tens of femtosecond, and modified areas are formed in the cut part of the target. Voltage is supplied to the bendable PZT element, and the middle part of the PZT element is protruded to generate bending stress.