Abstract:
A method of manufacturing an organic molecular device is provided to improve the reproductivity of manufacturing processes by checking easily an adsorption degree of conductive organic molecules using the amount of current between an upper and a lower electrode. A lower electrode(43) is formed on a substrate(41). A sacrificial pattern(44) for enclosing the lower electrode is formed on the substrate. An upper electrode(45) is formed along an upper surface of the resultant structure. A nano gap(46) is formed between the lower and upper electrodes by removing the sacrificial pattern therefrom. Conductive organic molecules(47) are adsorbed onto the lower and upper electrodes within the nano gap.
Abstract:
PURPOSE: Provided are various spirobifluorene compounds with alkyl substituents at desired positions and their preparation method, thereby preparing derivatives each having different functions and excellent solubility to be used for polymer synthesis and as electronic materials. CONSTITUTION: Spirobifluorene compound is represented by the formula(1), wherein R1 and R2 are the same or different each other, and represent a C1-C20 linear or branched alkyl group or alkoxy group, or a thioalkyl group; and X1 and X2 are the same or different each other and represent hydrogen or halogen, or a hydroxyl group, or bone or boric ester, provided that X1 and X2 don't represent hydrogen simultaneously.
Abstract:
PURPOSE: A novel 4-sulfanylalkyl-3,5-dinitrobenzyl alcohol compound and its preparation method are provided, to obtain a compound useful as a molecular electron acceptor and applicable to a molecular electronic material. CONSTITUTION: The 4-sulfanylalkyl-3,5-dinitrobenzyl alcohol compound is represented by the formula 1, wherein R is H, an alkyl group or an acetyl group; and n is an integer of 1-25. The method comprises the steps of reacting p-methylbenzoic acid with nitric acid to prepare p-methyl-3,5-dinitrobenzoic acid; reacting the p-methyl-3,5-dinitrobenzoic acid with an alkyl alcohol in the presence of a catalyst to prepare an alkyl p-methyl-3,5-dinitrobenzoate; reacting the alkyl p-methyl-3,5-dinitrobenzoate with an N-halosuccinimide to prepare an alkyl 4-halomethyl-3,5-dinitrobenzoate; converting the ester group of the alkyl 4-halomethyl-3,5-dinitrobenzoate into an alcohol group in the presence of a catalyst to prepare a 4-halomethyl-3,5-dinitrobenzyl alcohol; and reacting the 4-halomethyl-3,5-dinitrobenzyl alcohol with potassium thioacetate or an alkyl thiosodium to prepare a compound whose R is an alkyl or acetyl group or removing the alkyl or acetyl group to prepare a compound whose R is H.
Abstract:
PURPOSE: A method of patterning an indium tin oxide layer on a plastic thin film and a rotary coater used for the method are provided to coat photoresist in uniform thickness and prevent undercut generated in the event of wet etching. CONSTITUTION: An ITO layer(11) is formed on a plastic substrate(10), and photoresist is coated on the ITO layer. Heat treatment is performed in order to remove a solvent contained in the coated photoresist. Ultraviolet rays are irradiated on a portion of the ITO layer, which is etched, using a patterned mask. The exposed portion of the photoresist is developed. Heat treatment is carried out to eliminate moisture and solvent left in the photoresist. The ITO layer is dipped in an ITO etchant using the patterned photoresist as a mask to wet-etch the ITO layer. The photoresist used as the mask is stripped.
Abstract:
PURPOSE: A method for fabricating a molecular electronic device is provided to reduce a manufacturing cost by using a single crystal growth method and a selective etching method. CONSTITUTION: The first semiconductor layer(20), the second semiconductor layer, and the third semiconductor layer(40) are sequentially laminated on a substrate(10). A nanogap(35) is formed between the first semiconductor layer(20) and the third semiconductor layer(40) by etching a side of the second semiconductor layer. A metal layer is formed on a surface of the resultant. An upper part(50a) and a lower part(50b) of the resultant is electrically disconnected to each other by cutting vertically the substrate(10). A molecular electronic element(70) is coated on the upper part(50a) and the lower part(50b) near to the nanogap(35).
Abstract:
In the organic electroluminescence (EL) device containing a bis-condensed derivative of 4-(dicyanomethylene)-2-methyl-6-(para-(dimethylaminostyryl)-4H-pyran, and the preparation thereof, the inventive organic electroluminescence device has a high luminescent efficiency and color coordinates based on a high purity, and is further simple in a synthesis and is prominent in a thermal stability, thereby providing great merits to a mass production of the organic electroluminescence device.
Abstract:
PURPOSE: Provided are an organic, electroluminescent polymer compound which has high luminescence efficiency and excellent adhesion to insulation layer or metal electrode, and an organic, electroluminescent device comprising the same. CONSTITUTION: The organic, electroluminescent polymer compound has a structure represented by formula 1. In the formula 1, Ar is an aryl group having polar side chain, R3 and R4, which are same or different, represent a linear or branched alkyl group having C1-C20, each of x and y represents a ratio of each monomer and 0.01
Abstract:
A method for producing a highly stable polymer actuator is provided to allow the use of a polymer actuator at a low temperature and even after treatment at an extremely high temperature. A method for producing a highly stable polymer actuator comprises: a step(S11) of preparing an ionic polymer/metal composite comprising metal electrodes plated on both surfaces of a conductive polymer membrane; a step(S12) of removing water from the conductive polymer membrane of the ionic polymer/metal composite; and a step(S13) of swelling the ionic polymer/metal composite in a polar solvent having a higher boiling point and a lower freezing point than water. The polar solvent includes propylene carbonate.
Abstract:
A method for fabricating a nano wire device using nano imprinting lithography is provided to reduce an interval of fabrication time of a nano wire device by forming a pattern only once. An insulation layer(20) is formed on a substrate(10). A nano wire solution including a nano wire(60) is deposited on the insulation layer wherein a plurality of nano wires and an organic solvent can be mixed in the nano wire solution. Photoresist is formed on the resultant structure. The photoresist is stamped by using a nano imprinting stamp having a pattern of a nano size. A metal layer for a metal electrode is deposited on the stamped photoresist. The photoresist remaining on the insulation layer is removed by a lift-off process.