Abstract:
희토류 원소를 첨가한 광섬유 증폭기용 셀레나이드 유리 조성물을 제공한다. 상기 광섬유 증폭기용 셀레나이드 유리 조성물은 희토류 원소가 첨가된 게르마늄-안티몬-셀레늄이나, 희토류 원소가 첨가된 게르마늄-안티몬-갈륨-셀레늄으로 이루어질 수 있다. 상기 게르마늄, 안티몬 및 셀레늄의 최적 함량은 각각 몰%를 단위로 18≤게르마늄≤32, 8≤안티몬≤17, 58≤셀레늄≤72이다. 상기 게르마늄, 안티몬, 갈륨 및 셀레늄의 최적 함량은 각각 몰% 단위로 23≤게르마늄≤32, 3≤안티몬≤12, 2≤갈륨≤7, 53≤셀레늄≤ 62이다. 상기 희토류 원소는 프라세오디뮴, 디스프로슘, 어븀, 툴륨, 홀뮴, 터븀 또는 네오디뮴이고, 상기 희토류 원소는 하나 이상 포함될 수 있다. 상기 광섬유 증폭기용 셀레나이드 유리 조성물은 1.6㎛ 대역의 광섬유 증폭기로 이용될 수 있고, 열적 안정성이 우수하여 저손실 광섬유로 용이하게 제작될 수 있다.
Abstract:
PURPOSE: An optical fiber for transmission is provided to control each refractive index of a core and a cladding, maintain a desired degree of dispersion and low non-linearity, and obtain a high Raman gain coefficient by adding GeO2 to a core and a cladding of the optical fiber and doping F thereto. CONSTITUTION: An optical fiber for transmission includes a core and a cladding, which are formed with SiO2. The SiO2 of the core and the cladding is doped with GeO2 and F. The SiO2 of the core includes GeO2 of 0.1 to 3 mol percent and F of 0.05 to 1.5 mol percent. The GeO2 and the F are doped into the SiO2 within a predetermined range in order to increase a refractive index of the core as much as 0.003 to 0.015 and reduce the refractive index of the cladding as much as 0.0 to 0.003.
Abstract:
광섬유 표면 상의 상호 절연된 두 도전막 형성방법이 개시된다. 본 발명에서는, 기판에 형성된 그루브에 광섬유를 접착한 다음, 사진식각공정으로 광섬유 상에 도전막이 형성될 부위만 개구하는 포토레지스트 패턴을 형성한다. 포토레지스트 패턴 상에 도전막을 형성한 다음 리프트 오프하면, 그루브에서 광섬유가 분리되는 동시에 포토레지스트 패턴 및 포토레지스트 패턴 상에 형성된 도전막이 제거되고, 광섬유 표면에는 원하는 패턴대로 형성된 도전막만 남는다. 도전막이 형성된 면의 반대면에 대해서도 위와 같은 방법으로 도전막을 형성하여 광섬유 상에 상호 절연된 두 도전막을 형성할 수 있다. 본 발명이 개시하는 방법에 따라 광섬유 상에 도전막을 형성한 다음, 이를 이용하여 폴링을 하게 되면, 변조기, 가변필터 및 스위치와 같은 광전소자, 전기장 센서, 및 주파수 변환기나 분산 보상기와 같은 비선형 광섬유 광학 소자에 널리 응용될 수 있다.
Abstract:
The present invention relates to the fabrication of an optical device; and, more particularly to an electrode for fabricating periodically poled optical fibers and a fabrication method of periodically poled optical fibers using the electrode. To fabricate periodically poled optical fibers for improving the effect of three wave mixing in accordance with the second-order nonlinear optical phenomenon, the periodically poled optical fibers of the present invention is formed by using one or more electrodes with holes or grooves for a period satisfying the quasi phase matching condition between light waves in use. Also, using the electrodes described above, one or more holes or one or more grooves are formed on the surface of the optical fiber around the core in its length direction, and thereby make an optical fiber poled periodically.
Abstract:
PURPOSE: An optical fiber laser resonator is provided, which is used as a pumping source of a Tm-doped fiber amplifier of a non-silica family. CONSTITUTION: The first optical fiber(20) is connected to a laser diode(10) by a pig tailed form, and the second optical fiber(40) is connected by a different structure from the first optical fiber. The third optical fiber(31) consists of a cladding(42) and a core(41) where a grating is engraved and is configured to connect both ends of the first and second optical fibers by a tapering method. The first optical fiber is an SMA cable, the second optical fiber is a dual clad fiber which consists of a Yb-doped core and a cladding. GeO2 is doped in a core where the grating of the third optical fiber is engraved. A silica(32) as a packing means is configured such that an air gap is formed at the outside of the third optical fiber so that light passing through the cladding of the third optical fiber progresses smoothly.
Abstract:
PURPOSE: A tellurite glass composition doped with erbium ion(Er3+) and possibly GeO2 and In2O3 is provided, which improves pumping efficiency of 980nm region at optical amplifier and decreases crystallization in production of optical fibers besides advantages of a conventional tellurite glass. CONSTITUTION: An Er-doped tellurite glass composition is obtained by adding 0.05-5mol% of Er ion, 0-20mol% of GeO2 and/or 0-10mol% of In2O3 to a tellurite matrix glass comprising 40-80mol% of TeO2, 1-20mol% of B2O3, 5-30mol% of metal(2+) oxide, and 1-15mol% of alkali metal oxide, where the metal is at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn and Pb, and the alkali metal is at least one selected from the group consisting of Li, Na. K. Rb and Cs.
Abstract translation:目的:提供掺铒离子(Er3 +)和可能的GeO2和In2O3的亚碲酸盐玻璃组合物,其除了传统亚碲酸盐玻璃的优点之外还提高光放大器的980nm区域的泵浦效率并减少光纤生产中的结晶。 构成:铒掺杂亚碲酸盐玻璃组合物是通过在含有40-80摩尔%TeO 2的碲酸盐基质玻璃中加入0.05-5摩尔%的Er离子,0-20摩尔%的GeO 2和/或0-10摩尔%的In 2 O 3, -20摩尔%的B 2 O 3,5-30摩尔%的金属(2+)氧化物和1-15摩尔%的碱金属氧化物,其中所述金属为选自Mg,Ca,Sr,Ba,Zn 和Pb,碱金属是选自Li,Na中的至少一种。 K. Rb和Cs。
Abstract:
PURPOSE: A method of fabricating optical fiber is provided to overcome the difficulties of adjusting a radius ratio of a core to a cladding and to prevent an impurity of a core/cladding interface from being input. CONSTITUTION: A core glass bar is made by mixing glass raw through a melting-quenching manner and by shaping and slowly cooling the mixed material. The core glass bar is heated over a glass transient temperature and is afflicted with a tensile force so as to be extended in a length direction. Thus, there is made a core glass bar having a desired length. The core glass bar is fixed at the center of a mold(21) having a structure comprising upper and lower fixing holes(22,23), and the mold is filled up with melt solution. An optical fiber material is made by slowing cooling the mode filled up with the melt solution. After heating the optical fiber material over the glass transient temperature, the optical fiber is made through a well-known manner.
Abstract:
본 발명에서는 1.6 ㎛ 대역의 광신호를 증폭할 수 있는 광 증폭 시스템에 관한 것으로, 구체적으로는 +3가 프라세오디뮴(Pr 3+ ) 이온을 첨가한 비정질 재료로부터 발생하는 1.6 ㎛ 대역의 근적외선 형광을 박막이나 광섬유 형태의 광증폭기로 이용하는 것이다. 본 발명의 광 증폭 시스템은 희토류 이온의 다중포논 완화(multiphonon relaxation)에 가장 큰 영향을 미치는 대표적인 포논 에너지가 실질적인 320 cm -1 이하인 기지 재료(host material) 유리와, 상기 유리에 첨가된 프라세오디뮴 이온 및/또는 어븀이온과, 상기 이온 첨가 유리를 광 펌핑시켜 1.6 ㎛ 대역의 형광 천이를 유도하는 여기 수단을 포함하여 구성된다.
Abstract:
본 발명은 +4가 크롬 이온 또는 +3가 바나듐 이온을 능동 매질로 사용하는 단결정, 다결정 또는 비정질 재료에 +3가 이터븀 이온이 공동 첨가된 복합 광재료 및 이의 사용방법에 관한 것이다. 이 재료가 레이저, 광섬유 증폭기 등에 사용될 때, +4가 크롬 이온에서 여기상태흡수가 발생하는 600~800 nm 파장대를 피하고 +3가 이터븀 이온에서 흡수가 강하게 발생하는 980 nm 파장대로 여기하면 에너지는 이터븀 이온에서 크롬 이온으로 전달되고 방출되어 1200~1600 nm 대역의 형광을 발생하게 된다. 따라서, 본 발명은 +4가 크롬 이온의 짧은 형광 수명, 여기상태흡수로 인한 효율 저하 등의 문제를 해결하고 형광 방출의 효율을 향상시키는 것이다.