Abstract:
Methods for constructing reporter labeled carriers (such as beads) using a plurality of optically distinguishable carriers for chemical synthesis or attachment, such that the number of unique reporters required to label a carrier is reduced. One embodiment employs carriers that themselves have optically distinguishing characteristics. A carrier's identity is encoded by the combination of the optical characteristics of its reporter set, as well as the optical characteristics of the carrier itself. In other embodiments, different reporters are discriminable based on the intensity of their color labels, their size, and/or other optically detectable characteristics, and not necessarily by the presence or absence of particular colors. Another embodiment is directed to generating a plurality of reporters from a plurality of singly labeled micro-particles. The present invention can be employed in conjunction with a split/add/pool (SAP) or a directed synthesis process.
Abstract:
Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
Abstract:
Light from an object such as a cell moving through an imaging system is collected and dispersed so that it can be imaged onto a time delay and integration (TDI) detector. The light can be emitted from a luminous object or can be light from a light source that has been scattered by the object or can be a fluorescent emission by one or more FISH probes, frequently used to detect substances within cells. Further, light that is absorbed or reflected by the object can also be used to produce images for determining specific characteristics of the object. The movement of the object matches the rate at which a signal is read from the TDI detector. Multiple objects passing through the imaging system can be imaged, producing both scatter images and spectrally dispersed images at different locations on one or more TDI detectors.
Abstract:
A labeling method that labels an object or specific features of an object with labeled probes that provide a multiplexed signal that can be analyzed by spectral decomposition. This binary and higher encoding scheme can be employed to label components of biological cells. In each encoding scheme, labeled probes that selectively bind to a specific feature are required. The labeled probes include a binding element that binds to the feature, and at least one signaling component that generates a detectable signal, preferably a spectral signature. In one embodiment, adding multiple fluorescent dye molecules to each binding element provides the multiplexed signal. In another embodiment, adding only one signal compound to each binding element provides the multiplexed signal, such that some of the binding elements have a different signal compound added. The different signal compounds provide the multiplexed signal.
Abstract:
Methods for constructing reporter labeled carriers (such as beads) using a plurality of optically distinguishable carriers for chemical synthesis or attachment, such that the number of unique reporters required to label a carrier is reduced. One embodiment employs carriers that themselves have optically distinguishing characteristics. A carrier's identity is encoded by the combination of the optical characteristics of its reporter set, as well as the optical characteristics of the carrier itself. In other embodiments, different reporters are discriminable based on the intensity of their color labels, their size, and/or other optically detectable characteristics, and not necessarily by the presence or absence of particular colors. Another embodiment is directed to generating a plurality of reporters from a plurality of singly labeled micro-particles. The present invention can be employed in conjunction with a split/add/pool (SAP) or a directed synthesis process.
Abstract:
Light from an object (24), such as a cell, moving through an imaging system (20) is collected and dispersed so that it can be imaged onto a time delay and integration (TDI) detector (44). The light can be emitted from a luminous object or can be light from a light source that has been scattered or not absorbed by the object or can include a light emission by one or more probes within or on the object. Multiple objects passing through the imaging system (20) can be imaged, producing both scatter images and dispersed images at different locations on one or more TDI detectors (44).
Abstract:
Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
Abstract:
Aspects of the present invention encompass the collection of multispectral images from a population of objects, and the analysis of the collected images to measure at least one characteristic of the population, using photometric and/or morphometric features identifiable in the collection of images. In an exemplary application, the objects are biological cells. In a particularly preferred, but not limiting implementation, the plurality of images for each individual object are collected simultaneously. In an empirical study, the characteristic being measured involves the synapse between conjugated cells. The conjugated cells may represent a subpopulation of the overall population of objects that were imaged. In a particularly preferred, yet not limiting embodiment, the present invention enables the quantization of the redistribution of cellular molecules due to the conjugation of different biological cells. Significantly, such quantization is not feasible with standard microscopy and flow cytometry.
Abstract:
Light from an object (24), such as a cell, moving through an imaging system (20) is collected and dispersed so that it can be imaged onto a time delay and integration (TDI) detector (44). The light can be emitted from a luminous object or can be light from a light source that has been scattered or not absorbed by the object or can include a light emission by one or more probes within or on the object. Multiple objects passing through the imaging system (20) can be imaged, producing both scatter images and dispersed images at different locations on one or more TDI detectors (44).
Abstract:
Frequency domain velocity measurements and time domain velocity measurements are made using light from cells or other objects (18a). An optical grating (46) is used to modulate the light from an object so that it has a frequency proportional to the velocity of the object. Depending upon the embodiment, the pitch of the optical grating is uniform or varying. The modulated light is detected and various signal processing techniques, such as a Fast Fourier Transform function or processing in the time domain, are used to determinate an indication of the velocity of the object. Preferably, the indication of the velocity is applied in producing a timing signal employed for synchronization of an image of the object and an detector signal in an optical analysis system that uses a time delay integration detector to determine characteristics of the object in response to light from the object.