Abstract:
A joint speaker surround and gasket. The speaker surround of the joint speaker surround and gasket is formed of a surround material and has an inner edge defining a speaker cone aperture shaped to match a speaker cone and an outer edge portion shaped to match a housing. The gasket of the joint speaker surround and gasket is formed of a gasket material. The gasket is integrally bonded to the outer edge portion of the speaker surround.
Abstract:
Embodiments described herein may take the form of a textile product having one or more regions of reduced density. These reduced density volumes may form one or more features in the product. For example, the reduced density volumes may have better acoustic transmission properties, optical transmission properties, flexibility, and the like. Sound transmission may be enhanced not only in terms of clarity, but also overall range. That is, certain audio frequencies that the textile may normally block when in an unaltered state may pass through a textile having reduced density or reduced density regions.
Abstract:
Electronic equipment may include structured fabric. Structured fabric may be used as a protective case or cosmetic cover for an electronic device, may be used to form a band that holds an electronic device against a user's body, or may be used to cover one or more openings in an electronic device. Structured fabrics may be soft and pliable while maintaining the ability to hold a given shape without added support. Structured fabric may be formed by laminating fabric such as warp-knit fabric with a stiffener such as polymer film. Structured fabrics may include openings through which signals such as optical or audio signals pass. To maintain the geometry and shape of the openings in the structured fabric without covering the openings, the stiffener and adhesive that are attached to the fabric may be cut to form a pattern of openings that align with the openings in the fabric.
Abstract:
An electronic device includes a housing that defines an aperture, and a display assembly positioned in the aperture. The display assembly can include a display layer having a first portion, and a second portion bending at least partially below the first portion. The first portion and the second portion can define a bend volume, and a potting material can be disposed in the bend volume, such that the potting material contacts the first portion and the second portion. An internal enclosure can be contoured to the display assembly.
Abstract:
An electronic device including a housing defining an aperture, a display component positioned in the aperture, and a filler material at least partially surrounding a periphery of the display component. The filler material can contact the display component and a portion of the housing defining the aperture.
Abstract:
Electronic equipment may include structured fabric. Structured fabric may be used as a protective case or cosmetic cover for an electronic device, may be used to form a band that holds an electronic device against a user's body, or may be used to cover one or more openings in an electronic device. Structured fabrics may be soft and pliable while maintaining the ability to hold a given shape without added support. Structured fabric may be formed by laminating fabric such as warp-knit fabric with a stiffener such as polymer film. Structured fabrics may include openings through which signals such as optical or audio signals pass. To maintain the geometry and shape of the openings in the structured fabric without covering the openings, the stiffener and adhesive that are attached to the fabric may be cut to form a pattern of openings that align with the openings in the fabric.
Abstract:
An accessory device for an electronic device is disclosed. The accessory device may include a unitary body having a first region, a second region, and a hinge positioned between the first region and the second region. When a force is applied to the first region, the first region may bend or pivot at the hinge. When bent, the first region allows the electronic device to slide into or out of the accessory device. Further, the electronic device may slide into or out of the accessory device in a straight or linear manner. Also, the accessory device may further include a power supply designed to supply electrical current to a battery of the electronic device. The accessory device may further include a connector that electrically connects the power supply with the electronic device. The sliding motion of the electronic device prevents the connector from damage by bending.
Abstract:
The disclosure is directed to a multi-segment housing for an electronic device that includes multiple conductive segments that are structurally coupled by one or more non-conductive housing segments or splits. One or more of the conductive segments may be configured to operate as an antenna and the non-conductive housing segments may provide electrical insulation between the conductive segment and one or more adjacent housing segments. The non-conductive housing segment may be formed from a polymer having an array of fibers dispersed within the polymer. The fibers may be aligned along one or more fiber directions, which may be substantially perpendicular to an exterior surface of the housing.
Abstract:
An adaptive tensile control system includes a covering couple to a motorized retractor operable to release and retract the covering in response to control signals. An adaptive seat suspension includes a flexible suspension mat coupled to a motorized retractor operable to release and retract the flexible suspension mat in response to control signals. A method includes adapting the size of a support in a seat and adapting a covering overlying the support. A device includes an inflatable bolster within a seat having a covering. An apparatus includes a seat back and a seat that includes foam having a variable surface and a seamless covering.